

Groundwater Sustainability Plan (GSP) [Butte]

1. Introduction

GSA staff/tech team in progress

2. Plan Area and Basin Setting

Draft form, 2 reviews, awaiting additional updates (water budget, current mgmt. practices). Communication & Engagement Plan complete/approved

3. Sustainable Management Criteria (Monitoring network included)

- Chronic Lowering of Groundwater Levels Current
- Reduction of Groundwater Storage Current
- Depletion of Interconnected Surface Waters Ongoing by tech team
- Degraded Groundwater Quality Draft complete, AC reviewed, GSA staff review before submitting to GSA Board
- Subsidence Draft complete, GSA staff review for submitting to GSA Board
- Seawater Intrusion Completed, N/A

Butte Valley Representative Monitoring Points

Butte Valley GSA Advisory Committee January 28, 2021 Bill Rice, P.G.

Historical vs New Network Wells

Historical Network Wells	New Network Wells
Has historical data	Lacks historical data
Good for representative monitoring thanks to past records	Not good for representative monitoring without historical data
Historically monitored by government agencies	Part of a voluntary network of continuous loggers
RMPs for initial network	MA3 Possible Future RMPs MA4

Number of Wells From Historical Network

- Butte Valley is 125 miles²
- Initial water budget show

70-80,000 ac-ft pumped

• Targeted between 4 and 8

Table 1. Monitoring Well Density Considerations

Reference	Monitoring Well Density (wells per 100 miles ²)
Heath (1976)	0.2 - 10
Sophocleous (1983)	6.3
Hopkins (1984) Basins pumping more than 10,000 acre- feet/year per 100 miles ²	4.0
Basins pumping between 1,000 and 10,000 acre-feet/year per 100 miles ²	2.0
Basins pumping between 250 and 1,000 acre-feet/year per 100 miles ²	1.0
Basins pumping between 100 and 250 acre-feet/year per 100 miles ²	0.7

DWR BMP Monitoring Networks and Identification of Data Gaps, December 2016

Considerations in Choosing Wells

- Quality of historical data
- Location of wells
- Data on well construction

Well Type: Irrigation; well_code: 418512N1219183W001; well_name: 46N01E06N001M; well_swn: 46N01E06N001M

Measurement date

Well Type: Irrigation; well_code: 418661N1219587W001; well_name: 47N01W34Q001M; well_swn: 47N01W34Q001M

Measurement date

Target Area	Sample Schedule	Sampling Plan	Data Logger	Currently Installed With Telemetry	State Well Number	Site Code	Short Name From Map	Start of record	Principal Formations(s)	Well Depth (ft)	Inferred Perforations	First Perforated Top (ft)	First Perforated Bottom (ft)	Second Perforated Top (ft)	Second Perforated Bottom (ft)
Meiss Lake	Twice Annual*	DTW	DTW, Precipitation		47N02W27C001M	418948N1220832W001	27C	10/14/1993	Deep Lake Sediment, High Cascade Volcanics	601		160	410	435	599
Mount Hebron	Twice Annual*	DTW, NO3	DTW, SC, Precipitation		45N01W06A001M	417786N1220041W001	06A	10/28/1971	Butte Valley Basalt	104		40	104		
South West Butte Valley	Twice Annual*	DTW, NO3	DTW, SC, Precipitation		45N02W04B001M	417789N1220759W001	04B	10/24/1980	UNKNOWN	1237		Data Gap	Data Gap		
Butte Valley Irrigation District	Twice Annual*	DTW, NO3, B	DTW, SC, Precipitation		46N02W25R002M	417944N1220350W001	25R	11/06/1952	Butte Valley Basalt	116	Yes	70	116		
South Mid Valley	Twice Annual*	DTW, NO3, B	DTW, Precipitation		46N01W04N002M	418544N1219958W001	04N	10/12/1976	Lake Deposits	220		Data Gap	Data Gap		
South Mid Valley	Twice Annual*	DTW, NO3, B	DTW, SC, Precipitation		47N01W34Q001M	418661N1219587W001	34Q	10/30/1953	Lake Deposits	358		60	304		
East Valley	Twice Annual*	DTW, NO3, B	DTW, SC, Precipitation		46N01E06N001M	418512N1219183W001	06N	11/10/1952	Lake Deposits	200		30	150		
City of Dorris Well #6	Monthly	DTW, NO3, As, B	DTW, Precipitation		NA	NA	NA	NA	High Cascade Volcanics	1238		840			
West of City of Dorris	Twice Annual*	DTW			48N01W34B001M	419662N1219633W001	34B	10/24/1980	High Cascade Volcanics	515		38	515		
NW Butte, Mahogany Mtn F.Z.	Twice Annual*	DTW			48N01W28J001M	419755N1219785W001	28J	04/06/1977	High Cascade Volcanics	350		180	240		
North Mid Valley Nested	Twice Annual*	DTW, NO3, B	DTW, Precipitation		47N01W04D002M	419519N1219958W001	04D	10/7/1970	Lake Deposits	460		Data Gap	200		
North Mid Valley Nested	Twice Annual*	DTW	DTW, Precipitation		47N01W04D001M	419520N1219959W001	04D	6/30/1971	Lake Deposits	460		Data Gap	460		
Meiss Lake	Twice Annual*	DTW, NO3, B	DTW, Precipitation	Yes	NA	418371N1221105W001	09A	04/09/2014	Alluvium and High Cascade Volcanics	284		0	284		
East of Dorris	Twice Annual*	DTW	DTW, Precipitation		47N01E05E001M	419451N1218967W001	05E	04/27/1979		620		87	185	Data Gap	Data Gap
East Valley	Twice Annual*	DTW, NO3, B	DTW, Precipitation		47N01W23H002M	419021N1219431W001	23H	07/20/1978		1031		Data Gap	Data Gap		

RMP Locations and types

- ID from State Well Number
- Total Depth in feet
- 25 mile² buffer
- 14 wells selected (13+ Dorris)
- At least 9 wells in the final

network

Draft from 1/25/2021 8

Hydrographs for RMPs

DWR Stn_ID: ; well_code: 417786N1220041W001; well_name: 45N01W06A001M; well_swn: 45N01W06A001M

DWR Stn_ID: ; well_code: 417789N1220759W001; well_name: 45N02W04B001M; well_swn: 45N02W04B001M

DWR Stn_ID: ; well_code: 418371N1221105W001; well_name: BV05; well_swn: NA

DWR Stn_ID: ; well_code: 418661N1219587W001; well_name: 47N01W34Q001M; well_swn: 47N01W34Q001M

DWR Stn_ID:; well_code: 419519N1219958W001; well_name: 47N01W04D002M; well_swn: 47N01W04D002M

DWR Stn_ID: ; well_code: 419662N1219633W001; well_name: 48N01W34B001M; well_swn: 48N01W34B001M

DWR Stn_ID: ; well_code: 419755N1219785W001; well_name: 48N01W28J001M; well_swn: 48N01W28J001M

Butte Valley Water Level SMC Development

Butte Valley GSA Advisory Committee November 19, 2020 and January 28, 2021

GSP Chapters

1. Introduction

2. Plan Area and Basin Setting

3. Sustainable Management Criteria

4. Projects and Management Actions

5. Plan Implementation

Where we are.... (roadmap) **Sustainability Indicators** Degraded Surface Water Reduction Seawater Lowering Land of Storage Quality Depletion **GW** Levels Intrusion Subsidence E Internet EL. **Measurable Objective** (MO) hululululu **Monitoring** Triggers

F

Total

Volume

The second

Groundwater

Elevation

ահան հեղեր այս րոր արդորը hhhhhh **Minimum Threshold (MT)** Volume of SW Isocontour Degraded Rate of of Chloride Quality Subsidence Depletions

Agenda

- Developing a "water level " Sustainable Management Criteria (SMC) – following up on last months discussion
- Preliminary Strawman for Undesirable Results, Minimum Threshold, Measurable Objectives, and Projects & Management Actions
- Feedback and brainstorming

How Does Water Level Elevation Change in Such a System?

5 wells in Butte Valley

Precipitation Decline

How Does Water Level Elevation Change in Such a System?

Less recharge, same amount of pumping => less outflow from Butte Valley to "drain"

How Does Water Level Elevation Change in Such a System?

Same recharge, more pumping => less outflow from Butte Valley to "drain"

Summary: Drivers of Water Levels in Butte Valley

• INCREASE / DECREASE in groundwater pumping in Butte Valley

• CLIMATE CHANGE => use groundwater model to evaluate

 WATER LEVEL CHANGES TO THE NORTH-EAST of BUTTE => use groundwater model to evaluate

 CURRENT UNDERSTANDING UNCERTAINTY => reduce with groundwater model currently being developed, future monitoring, model improvement

Clarification Questions?

Agenda

- Developing a "water level " Sustainable Management Criteria (SMC) following up on last months discussion
- Preliminary Strawman for Undesirable Results, Minimum Threshold, Measurable Objectives, and Projects & Management Actions
- Feedback and brainstorming

The "thermometer" for water level has to build on water level measurements in selected **representative wells** across Butte Valley

modified from Ca DWR 2016

Sustainable Management Criteria for Water Level - Outline of the Approach -

DWR example Minimum Threshold

https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/Groundwater-Management/Sustainable-Groundwater-Management/Best-Management-Practices-and-Guidance-Documents/Files/BMP-6-Sustainable-Management-Criteria-DRAFT_ay_19.pdf

Example Distribution of Representative Monitoring Points (RMP)

- for illustration only, exact RMPs to be discussed another time -

Setting the Minimum Threshold (MT) for Water Levels

Constraints on Setting Water Level SMC:

Consider how to "bend" long-term water level decline

from: DWR, Sustainable Management Criteria Draft Guidelines

Constraints on Water Level SMC Design: No further decline after 2042

5 wells in Butte Valley

Constraints on Water Level SMC Design: No further decline after 2042

5 wells in Butte Valley

The deeper we set the MT, the more well outages occur and the higher the pumping cost (more undesirable results that are not avoided by a deeper MT)

Note: The vertical axis represents the depth from the current water level to within 20 ft (domestic wells) or 50 ft (ag, public supply wells) of the bottom of the well. Here, we use this depth as a rough indicator for well outage because many wells in Butte Valley may have pumps below the top of the screen or in open basalt. Many actual well outages may occur even at higher water levels.

The deeper we set the MT, the more well outages occur and the higher the pumping cost (more undesirable results that are not avoided by a deeper MT)

Note: The vertical axis represents the depth from the current water level to within 20 ft (domestic wells) or 50 ft (ag, public supply wells) of the bottom of the well. Here, we use this depth as a rough indicator for well outage because many wells in Butte Valley may have pumps below the top of the screen or in open basalt. Many actual well outages may occur even at higher water levels.

The deeper we set the MT, the more well outages occur and the higher the pumping cost (more undesirable results that are not avoided by a deeper MT)

Note: The vertical axis represents the depth from the current water level to within 20 ft (domestic wells) or 50 ft (ag, public supply wells) of the bottom of the well. Here, we use this depth as a rough indicator for well outage because many wells in Butte Valley may have pumps below the top of the screen or in open basalt. Many actual well outages may occur even at higher water levels.

Constraints on setting the Minimum Threshold for Water Level:

Water needs to continue to flow toward Lower Klamath

=> water levels need to be much higher than 4080 feet elevation

Clarification Questions?

Setting the Measurable Objective (MO) for Water Levels

Possible Measurable Objectives:

• Water level within the range observed 1990 – 2015 Alternatives:

- Water level within the range observed prior to 1990?
- Water level within the range observed 1960-1990?

Constraints on Setting Water Level SMC: Lowering **GW** Levels • 1990 – 2014 water levels 1980 – 2014 water levels MO • "soft landing" 10-15 ft MT • well outage, pumping cost **below current** 0-30 ft Lower Klamath elevation **below current** > 50 ft **below current**

Clarification Questions?

Identifying Possible Projects and Management Actions

Projects and Management Actions

- Why do we need projects and management actions (PMAs)?
 - To achieve the sustainability goal by 2042 and avoid undesirable results through 2072
 - To respond to changing conditions in the Basin
 - Each of the PMAs may support achieving sustainability for one or more sustainability indicators
- Can be categorized into
 - Existing PMAs
 - Proposed or planned PMAs to reach sustainability
 - PMAs to be evaluated in the future

Projects and Management Actions

- Can be categorized into
 - Existing PMAs
 - Proposed or planned PMAs to reach sustainability
 - PMAs to be evaluated in the future
- Key Information
 - Project Goal(s)
 - Costs Capital and O&M
 - Completion status/date
 - Impacts on the system
 - Single or multiphase
 - Targeted sustainability indicator(s)

PROJECTS &				
Date				
Project Title				
PROJECT PROPO	NENT			
Agency Name				
Key Contact				
Email				
Phone				
PROJECT LOCATION				
Мар				
PROJECT DESCRI	PTION			
Description of Project Elements				
Actions				
Project Goals				
Project Benefits				
Project Impacts				
Project Costs/Fina	ncing			
PROJECT STAT	US			
Concept 🗆	Planned 🗆	In-Design 🗆	Under Construction \Box	Completed
Project Schedule				

Integrated Model and PMAs

- What the Integrated Model Provides:
 - Simulates existing and potential PMAs to assess their impact in terms of the relative change between baseline and projected conditions.
 - Helps evaluate how such impacts would translate to SMC settings and achieving the sustainability goal
 - Final projected model will include all relevant PMAs agreed upon for the GSP that allow maintenance of SMCs over the 50-year planning and implementation horizon.
- What It Needs:
 - Detailed information that quantifies projects in a manner that is implementable in the model

Butte Valley Brainstorm List of Projects/Management Actions

- Cap on consumptive water use
- Change in recharge point from Butte Creek
- Explore recharge benefits in National Grasslands from Meiss Lake overflow
- Irrigation efficiency measures or on-ground projects
- Soft landing
 - Funding strategy for deeper wells
 - Strategic reductions in groundwater pumping (timing)
- Upland management

Why Projects and Management Actions?

DWR Stn_ID: ; well_code: 418944N1219643W001; well_name: 47N01W27B001M; well_swn: 47N01W27B001M

Strawman for Projects and Management Actions

• Starting in 2022: Cap consumptive water use (ET) at present rate

Why Cap Consumptive Water Use?

Why Cap Consumptive Water Use?

• IF there is: "no overdraft – no change in recharge – no change in water levels in Lower Klamath"

=> no decline in water level

- IF there is overdraft, reduction in recharge, lowering of water levels in Lower Klamath
 - => a cap reduces speed of decline in water level => helps with soft landing
- Economically least painful action.
- Easily monitored by satellite observations / DWR ET mapping program
- Does need an implementation program (as would all other management actions and projects)

Strawman for Projects and Management Actions

- Starting in 2022: Cap consumptive water use (ET) at present rate
- When/if reaching trigger levels or approaching MT for water levels:
 - Reduce net use of groundwater in Butte Valley => reduce ET
 - Improve agricultural irrigation efficiency to reduce evaporative losses (reduction in consumptive use)
 - Reduce crop ET
 - Less cropped acreage
 - Less crop ET through reduction in irrigation (deficit irrigation)
 - Alternative crops with lower ET
 - Increase recharge:
 - Cloud seeding (unlikely to yield additional recharge)
How do we get more operational flexibility than 10-15 ft, IF NEEDED?

5 wells in Butte Valley

71

The deeper we set the MT, the more well outages occur and the higher the pumping cost (more undesirable results that are not avoided by a deeper MT)

Note: The vertical axis represents the depth from the current water level to within 20 ft (domestic wells) or 50 ft (ag, public supply wells) of the bottom of the well. Here, we use this depth as a rough indicator for well outage because many wells in Butte Valley may have pumps below the top of the screen or in open basalt. Many actual well outages may occur even at higher water levels.

72

How to tackle the uncertainty about whether or not there is overdraft?

How to tackle the uncertainty about whether or not there is overdraft?

Set MT to be well above Lower Klamath => insurance to DWR that any existing overdraft conditions would be corrected in time

=> GSA will learn through adaptive management => reduced uncertainty, better knowledge over time through monitoring, modeling, assessment

Mahogany Range

Possible Future Outcomes with Step 1 Implemented

Water levels will stabilize, MO achieved, no further actions needed

Water levels will decline to new equilibrium level

=> if new equilibrium level is above MT => no further actions needed

=> if new equilibrium level is above "expanded soft landing" MT
=> actions needed to address outages
=> no action needed to drastically lower pumping

Water levels continue to decline unabatedly

=> action needed to lower pumping (less ET!)

Adaptive Management Timeline

Agenda

- Developing a "water level " Sustainable Management Criteria (SMC) following up on last months discussion
- Preliminary Strawman for Undesirable Results, Minimum Threshold, Measurable Objectives, and Projects & Management Actions
- Feedback and brainstorming

Solicited Feedback

- Concerns about setting the MT at 10-15 ft below current levels
- Concern about well outages if setting the MT much lower than 10 ft (20-50 ft) below current
- Thoughts on the feasibility of an "expanded soft landing" program
- Concerns about setting the MO the recent historic range of water levels
- Thoughts on the proposed projects and management actions

Proposed projects and management actions

STEP 1

cap on consumptive use at current levels

STEP 2 only if water level decline continues

support for well replacement

more efficient irrigation equipment

investment in conversion to new crops with lower ET