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Agenda

* GSP determination and possible direction on next steps

* Implementation Project Updates
o Data collection and sensor installation

* Irrigation Workshop Recap



GSP Determination and Next Steps

e Corrective Action 1 - Reconduct the assessment of overdraft conditions
and describe management actions to mitigate overdraft.
o Refine the water budget, and better understand overdraft/no overdraft

o Provide “reasonable means” to mitigate overdraft (describe feasible management
actions)

* Corrective Action 2 - Further justify the SMCs set for water levels, and
guantitatively describe the effects of the criteria on users of
groundwater.

o Describe the specific, guantitative undesirable results that are planned to be
avoided

o MTs should be set at a level where depletion of supply across the Basin may lead
to undesirable results




GSP Determination and Next Steps

* Monthly meetings with DWR

e Refinement of water budget

e Review of model results and boundary conditions

* Quantitative description of undesirable results for users of groundwater



Finding 1: There is no immediate threat of
water levels reaching MTs, but further long-

term steady decline is not desirable nor
acceptable.

Evidence: RMP Network Hydrographs




Monitoring Network

DWR Stn_ID: ; well_code: 417786N1220041W001; well_name: 45NO1W06A001M; well_swn: 45NO1WO06A001M
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Monitoring Network
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Monitoring Network

DWR Stn_ID: ; well_code: 417944N1220350W001; well_name: 46N02W25R002M; well_swn: 46N02W25R002M
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Monitoring Network

DWR Stn_ID: ; well_code: 418512N1219183W001; well_name: 46NO1EQO6N001M; well_swn: 46NO1E06N001M
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Monitoring Network

DWR Stn_ID: ; well_code: 418544N1219958W001; well_name: 46N0O1W04N002M; well_swn: 46NO1W04N002M
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Monitoring Network

Groundwater elevation (ft amsl)
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Monitoring Network

DWR Stn_ID: ; well_code: 418948N1220832W001; well_name: 47N02W27C001M; well_swn: 47N02W27C001M
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Monitoring Network

DWR Stn_ID: ; well_code: 419021N1219431W001; well_name: 47N01W23H002M; well_swn: 47N01W23H002M
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Monitoring Network

DWR Stn_ID: ; well_code: 419451N1218967W001; well_name: 47NO1E05SEQ001M; well_swn: 47NO1E0SEQQ01M
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Monitoring Network

DWR Stn_ID: ; well_code: 419519N1219958W001; well_name: 47N01W04D002M; well_swn: 47N01W04D002M
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Monitoring Network

DWR Stn_ID: ; well_code: 419520N1219959W001; well_name: 47N01W04D001M; well_swn: 47N01W04D001M
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Monitoring Network

DWR Stn_ID: ; well_code: 419662N1219633W001; well_name: 48N01W34B001M; well_swn: 48N01W34B001M
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Monitoring Network

DWR Sin_ID: ; well_code: 419755N1219785W001; well_name: 48N01W28J001M; well_swn: 48N01W28J001M
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Butte VaIIey TSS Well (an 1 2024 - April 30 2024)

Groundwater elevation (ft amsl)
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Finding 2: To support water levels in Butte
Valley above the MT (in the 4100s’ range),
sufficient subsurface outflow toward
Tulelake/Lost River is needed (water levels in
the low 4000s’ range) => affects sustainable
vield in Butte Valley.

Evidence: Conceptual Model, BVIHM



Simplified Conceptual Model

sustainable yield = recharge - necessary outflow to NE (Lower Klamath Wildlife/Tulelake/Lost River)

South to North Cross-Section Butte Valley
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Vol. (ac-ft)

Groundwater Model Update
Butte Valley Integrated Hydrologic Model (BVIHM)

1.0 1e6 Estimate of Applied Annual Agricultural Groundwater, Butte Valley, 1990-2023
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Figure 1.39: Spatial distribution of long-term average recharge (left, red: highest amounts of
recharge, dark blue: lowest amounts of recharge) and location of areas with groundwater pumping
(right). Black outline: BVIHM simulation domain boundary.




Simulated Cumulative Water Volume of Storage
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BVIHM: Where are we heading, worst case?
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° 20 1 1_202 3 d rl est 1.0.1€6 Estimate of Applied Annual Agricultural Groundwater, Butte Valley, 1990-2023
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BVIHM: Unimpaired scenario (super-drought)

e 2011-2023 driest
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BVIHM: Sustainable Yield Future Scenario
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BVIHM: Where are we heading, -..<cworst case?
e 2000-2023 3 1e6 Estimate of Applied Annual Agricultural Groundwater, Butte Valley, 1990-2023
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BVIHM: Unimpaired scenario (mega-drought)

* 2000-2023
megadrought
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BVIHM: 50% pump reduction (mega-drought)

e 2000-2023 L5 le6 Estimate of Applied Annual Agricultural Groundwater, Butte Valley, 1990-2023
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BVIHM: Sustainable Yield (mega-drought)

* 2000-2023
megadrought
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* 2023 pumping fixed
all years thereafter
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Finding 3: Revised sustainable yield of 65,000
acft is a reasonable target (same as 1990-2014

average, similar to reported pumping of the
1970s)

Evidence: BVIHM



Model Update: Simulate Applied Groundwater in Bullet-118 Butte Valley, CA,
1990-2023

300000 Estimate of Applied Annual Agricultural Groundwater, Bullet-118 Butte Valley, 1990-2023

Simulate Applied Groundwater in the Bullet-118 Butte Valley, CA, 1990-2023
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Finding 4: Water level will stabilize before
2042, unless climate remains ultra-dry (would
require revision of sustainable yield)

Evidence: future water level monitoring



Core Action - Option 1

e Revise minimum thresholds to be at lowest historic levels during
baseline reference period 1990-2014 (similar to many approved GSPs)

* Eliminates need to provide additional details on a well mitigation
program (water levels will stay above baseline period levels)

* Will require stepwise lowering of everyone’s pumping output, in 10%
increments until water levels are above MT (back to 1990-2014 levels)
=> may eventually require 50%+ pumping reduction, pending climate
and given uncertainty about recent watershed recharge

* Low likelihood of approval by advisory committee, GSA board due to
impact on economic livelihood of the basin



Core Action Option 2

Keep minimum thresholds and extended minimum thresholds as
defined in 2022 GSP
Requires a strong well mitigation program to avoid significant

undesirable results

O Create public water supply system in Macdoel with a supply well that has a top of the screen
at depths of 400’ or more (replacing domestic wells)

O Create public water supply system in Mt Hebron with a supply well that has a top of the
screen at depths of 400’ or more (replacing domestic wells)

O Expand public water supply system in Dorris (replacing domestic wells on the border of the
city).

O Provide emergency well deepening program for domestic well outages outside these public

water supply systems

Sustainable yield of 65,000 acft (about 10% less than 2011-2023)

O Improve irrigation efficiency
O Improve metering of groundwater pumping, implement assessment of ET, update BVIHM and
evaluation of sustainable yield




Core Action Option 3

* No or very limited well mitigation program

* No or very limited monitoring and management of groundwater use
* Fail GSP revision

* Proceed into Chapter 11

* Management under SWRCB:
o Costly fee schedule for all water supply wells except domestic wells
o Public metering of all water supply wells

o Focus on reduction of pumping to bring water levels to pre-2015 elevation, avoid
well outages

o Pumping reductions may be in the range of 10% to 50%+ pending climate &
future water level trends



e
Tech-Team Assessment of Most Likely to

Succeed: Core Action 2

* Follows the intent of the original GSP
e Keeps basin in no-overdraft conditions
* Avoids significant undesirable results through strengthened well mitigation program

* Provides GSA operational flexibility for managing groundwater pumping, adjusting
sustainable yield in response to climate variation, at 5 year-increments

* Will likely allow groundwater use at 65,000 acft (5% above reported groundwater use
of the 1970s; equal to 1990-2014 and to 2022-2023; 10% less than the average 2011-
2023)

o Can be achieved through irrigation efficiency improvements at reasonable economic cost to
agricultural sector

o Improve metering of groundwater pumping, implement assessment of ET, update BVIHM and
evaluation of sustainable yield

e Cost of providing well mitigation program is fraction of economic impact if
agricultural production were reduced by one-quarter, one-third, one-half, or more



Five-Year Action Plan under Option 2

* Plan for public supply systems to replace most shallow domestic wells
(well depth at least 400 ft bgs, top of screen) => build future resiliency

* Plan for well deepening outside public supply systems to depths of at
least 200 ft bgs (top of screen) => build future resiliency

* Set sustainable yield at 65,000 acft for the next 5 years:
o Monitor baseline and improvements

- should lead to some foreseeable stabilization of water levels, soft landing prior to
2042

* Plan for
o 10% improvements on efficiency,

o or 10% demand reduction
o Or combination of both



Implementation Project Update



Timeline — Implementation Projects

e Formation of work groups in August AC Meetings
e Work groups approve draft project scope and schedule
e Final grant awards expected in September

e October AC Meetings- review of final funding awards
* Detailed scope and schedule for funded projects provided to Advisory Committee

e February AC Meetings- updates from project work groups, updates depend on individual project schedules
* SGMA Compliance- Annual Report for WY 2023

e May AC Meetings- Update on implementation projects




Timeline through Fall 2024

* GSP determination/corrective actions, submission due July 16 2024

e Summer sample collection

e Continue expansion of the monitoring network and monitoring design plan

e Installation of 4 new domestic wells through the City of Dorris Project (Drought Emergency)
* Continue development of well inventory and approach to the fee study

e August AC Meetings

Preliminary Database Management System (DMS)

Model scenario results with different management actions
October AC Meetings

Continued data collection

2024 Q4




Jan 1

Feb 1 Mar 1 Apr 1 May 1 Jun1 Jul 1 Aug 1

Sept 1 Oct1 Nov 1 Dec 1 Dec 31

Implementation Grant Progress rioun viay 2024
E

1.1
1.2
1.3
1.4
2

2.1
2.2
2.3
3

3.1
3.2
4

4.1
4.2
4.3
4.4

SGMA Compliance and GSP Updates

GSP Revisions

Reporting (Data and Annual Report)

Model Updates and Scenario Evaluation

Data Gaps and Monitoring Expansion and DMS

Fee Study and Economic Analysis

Evaluation of Fee/Rate Options and Schedule Development
Parcel scale groundwater use estimate

Economic Analysis and Water Market Analysis

Well Inventory

Database Development and Well Risk Assessment
Monitoring Well Construction or Well Instrumentation
Monitoring Network

Upper watershed monitoring

Voluntary well metering

Monitoring network expansion

Improve GDE Analysis

Due January 2027
Annual Reports due April 1 of each year (submitted AR 2023)

Locate snow monitoring stations, secure permissions
ID wells to instrument, goal of 40 wells.
Water quality wells, install two stream gauges

Review GDEs identified in GSP. Collect monitoring data

In Progress

Complete

Added to Backlog

- Blocked

In Progress
In Progress
In Progress

In Progress

Not Started
In Progress

Not Started

In Progress

Not Started

In Progress
Not Started
In Progress

Not Started
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Sensor Installation and Data Collection

* Installed flow station near Meiss Lake on Prather Creek
* Installed shallow groundwater monitoring well telemetry in Macdoel
* Conducted a geophysics study in SE Butte Valley looking at lava tubes

* Conducted a geophysics study around the Butte Valley groundwater
recharge sink

* Surveyed potential locations of future groundwater model calibration
sites along Butte Creek

* Continued stage/flow measurements of new flow stations

* Beginning monthly depth to water measurements at key groundwater
wells



Sensor Installation

Data Collection

* Geophysics to study
groundwater movement
through fractured basalt
(lava tube?) and a major
groundwater recharge site
near Butte Creek.

e Installed new sensors in

Macdoel to monitor shallow
wells in the Macdoel area.
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Irrigation Efficiency Workshop - Recap

* “Workshop on Efficient Water Management for Forage Crops”
e Conducted Thursday March 14th
* Field visits with irrigation specialist May 21, 22, 23

* Link to survey: https://us11.list-
manage.com/survey?u=2516c89941f49355f514cefb8&id=343532deb67&
attribution=false



https://us11.list-manage.com/survey?u=2516c89941f49355f514cefb8&id=3435a2de67&attribution=false
https://us11.list-manage.com/survey?u=2516c89941f49355f514cefb8&id=3435a2de67&attribution=false
https://us11.list-manage.com/survey?u=2516c89941f49355f514cefb8&id=3435a2de67&attribution=false

Thank You
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