

Workshop on Efficient Water Management for Forage Crops Tulelake, CA – March 14th, 2024

Daniele Zaccaria, Ph.D.

Agricultural Water Management Specialist, L.A.W.R. Department - UC Davis

Ph.: (530) 219-7502 Email: <u>dzaccaria@ucdavis.edu</u> <u>https://lawr.ucdavis.edu/people/faculty/zaccaria-daniele</u>

- 1) Background Information on Reference ET (ETo) vs. Crop ET (ETc)
- 2) Review Information on Alfalfa ET from most recent studies

WHAT IS ET?

Evapotranspiration or ET is the total amount of water lost to atmosphere from a cropped surface through evaporation from soil and plant canopy, and transpiration ("breathing") by the plants.

Crop & growth stage

Solar Radiation

✓ Air Temperature

✓ Wind Speed

✓ Relative Humidity

ET rate

Reference ET (ETo) vs. Crop ET (ETc)

ETo or **Reference Evapotranspiration** is the water lost to atmosphere from:

- \checkmark an extensive surface of green grass (CA)
- \checkmark with uniform height (4.7 in. = 0.12 m)
- \checkmark actively growing without limitations
- ✓ well-watered & well-nourished
- ✓ free of water stress and diseases✓ completely shading the ground.

ETc or Crop Evapotranspiration is the amount of water used by:

- ✓ a disease-free, well-watered and well-fertilized crop
- \checkmark grown in large fields
- ✓ under optimum soil-water and nutrient conditions
- \checkmark achieving full production under the given climatic conditions

Evaporation + Transpiration = EvapoTranspiration ETc

ETo vs. ETc

(EVAPORATION + TRANSPIRATION) = EVAPOTRANSPIRATION

At the initial stages of the crop (or during re-growth), ETc is small and most of the water is lost by evaporation from soil surface

When plant canopy grows, ETc increases and most of water is lost by transpiration from leaves and canopy

ET IS AN ENERGY-DRIVEN PROCESS SOLAR RADIATION IS THE MAIN ENERGY SOURCE FOR CROP ET

Residual of Energy Balance Method for Calculating Actual Crop Evapotranspiration

Ground Heat Flux

Alfalfa ET varies along the growing season as it is affected by weather, growth & periodic cuttings

Region	Site	Year	Age Of alfalfa	Seasonal ET (inches)	Reference ET (inches)
Imperial Valley	LM1	2007	3	55.8	73.2
	LM2	2008	2	66.0	73.3
	LM2	2009	3	55.6	67.9
	GR	2010	2	63.5	73.2
	EL	2010	2	59.8	70.0
	WA	2010	2	65.8	70.0
San Joaquin	KC	2007	2	56.6	57.0
Valley	KC	2008	3	59.4	59.3
Sacramento	CH1	2005	3	49.4	63.6
Valley	CH2	2006	2	54.8	55.9
	CH2	2007	3	55.0	58.0
	CH2	2008	4	50.4	59.4
	EE	2010	3	46.3	48.8
	EW	2010	4	42.5	48.8
Scott	EN	2007	2	39.6	44.0
Valley/Shasta	EN	2008	3	32.8	42.6
Valley	EN	2009	4	33.8	40.4
	FI	2009	5	36.1	37.4
	SH	2009	4	38.8	40.4
	AP	2010	5	37.3 AVE	37.4
	FI	2010	2	34.7 37	in. 37.4
	FA	2010	6	38.8	41.1
Tulelake	TU	2007	4	39.0	40.5
	TU	2008	5	34.3	36.5

Seasonal Crop Coefficient (Kc) for commercial field conditions: $K_c = 0.96 - 0.98$ (averaged over the entire crop season – Sacramento Valley)

Within-cycle Crop Coefficient (Kc): Average Yield (dry matter) = 9.3 – 9.6 Ton/ac $K_c \approx 0.35 - 0.40$ after cutting until irrigation, and for 3-4 days after $K_c \approx 1.05 - 1.10$ from 3-4 days after irrigation till the next cutting

In 2012-2013-2014, a UC Team measured Alfalfa ET in 3 center pivot irrigated, well-managed fields in Scott Valley for 3 years (from March 15 onwards)

R.L. Snyder, P. D.Thamer, N. Stevens, T.H. Harter, and S.B. Orloff

Year	Field	ETos	ET _{cs}	Kcs	Ending date
		in.	in.		
	A5	32.5	27.9	0.86	11-Sep
2012	A7	32.3	29.7	0.92	10-Sep
	A8	31.5	27.7	0.88	6-Sep
	A1	37.8	32.7	0.87	5-Oct
2013	A2	36.8	34.8	0.95	26-Sep
	A5	29.0	25.5	0.88	5-Sep
	A1	35.3	32.8	0.93	6-Sep
2014	A2	33.5	28.8	0.86	27-Aug
	A5	37.3	31.0	0.83	16-Sep
	Means	34.0	30.1	0.89	12-Sep

Seasonal *ETo*, *ETc*, and *Kc* (*ETos*, *ETcs*, *and Kcs*) for the three seasons in Scott Valley. The season start date is 15 March and the season ends on the indicated dates.

SCOTT VALLEY

Seasonal ETo, ETc, and Kc

Average year-long Kc = 0.89

Year	Field	ETos	ET _{cs}	Kcs	Ending date
		in.	in.		
	A5	32.5	27.9	0.86	11-Sep
2012	A7	32.3	29.7	0.92	10-Sep
	A8	31.5	27.7	0.88	6-Sep
	A1	37.8	32.7	0.87	5-Oct
2013	A2	36.8	34.8	0.95	26-Sep
	A5	29.0	25.5	0.88	5-Sep
	A1	35.3	32.8	0.93	6-Sep
2014	A2	33.5	28.8	0.86	27-Aug
	A5	37.3	31.0	0.83	16-Sep
	Means	34.0	30.1	0.89	12-Sep

Seasonal *ETo*, *ETc*, and *Kc* (*ETos*, *ETcs*, *and Kcs*) for the three seasons in Scott Valley. The season start date is 15 March and the season ends on the indicated dates.

Average off-season Kc = 0.80

Annual ETo, ETc, and Kc

Average seasonal Kc = 0.84

Year	Field	EToc	ET _{cc}	Kcc
		in.	in.	
	A5	45.7	37.3	0.82
2012	A7	45.7	39.5	0.86
	A8	45.7	38.4	0.84
	A1	47.7	40.0	0.84
2013	A2	47.7	43.0	0.90
	A5	47.7	40.2	0.84
	A1	48.6	42.5	0.87
2014	A2	48.6	38.9	0.80
	A5	48.6	39.7	0.82
	Means	47.3	40.0	0.84

Annual cumulative *ET*_o, *ET*_c, and *K*_c (*ET*_{oc}, *ET*_{cc}, and *K*_{cc}) for the three fields in Scott Valley by year. The annual starting and ending dates are 1 January 1 and December 31.

THANK YOU !!

QUESTIONS OR COMMENTS?