Appendix 2-B. Water Quality Assessment

3 Contents

4	Regulatory Background	3	;
5	Water Quality Assessment	4	ļ
6	Data Sources	4	
7	Selection of Numeric Thresholds	5	;
8	Calculations	12)
9	Filtering Process	12)
10	Results	13	;
11	Constituents of Concern (COCs)	13	;
12	References	39)

Regulatory Background

¹⁴ Federal and State Regulations

The overarching federal law concerning water quality is the Clean Water Act, passed in 1972, and 15 is applicable to surface waters and wetlands. In contrast, the federal Safe Drinking Water Act 16 (SDWA) applies to both surface and groundwater, providing protection to drinking water supplies. 17 Under the SDWA, federal standards were established through the United States Environmental 18 Protection Agency (USEPA), in the form of maximum contaminant levels (MCLs). Secondary max-19 imum contaminant levels (SMCLs) have also been established at the federal level; these address 20 esthetics of drinking water sources and are not enforceable. The state of California has its own 21 Safe Drinking Water Act that includes MCLs and SMCLs which are, for select constituents, stricter 22 than those set at the federal level. The California MCLs and SMCLs are codified in Title 22 of the 23 California Code of Regulations (CCR). The standards established under the federal and state Safe 24 Drinking Water Acts are enforced through the State Water Resource Control Board's (SWRCB's) 25 Division of Drinking Water (DDW). 26

The California Porter-Cologne Water Quality Act, contained in California Water Code Division 7, 27 applies to groundwater and surface waters, designating responsibility for water quality and safe 28 drinking water to the SWRCB and the nine Regional Water Quality Control Boards (RWQCB) in 29 California. The Act requires RWQCBs to develop water quality control plans to manage the quality 30 of surface water and groundwater in specific hydrologic regions; the plans contain defined water 31 quality objectives for each region. These water quality objectives protect the quality of surface 32 waters, groundwaters, and associated beneficial uses. The water quality control plan must be 33 approved by both the SWRCB and the USEPA. The Butte Valley Basin is in the North Coast Region 34 and is regulated under the North Coast Regional Water Quality Control Board (Regional Water 35 Board), with water quality objectives detailed in the Water Quality Control Plan for the North Coast 36 Region (Basin Plan).¹ 37

The SWRCB's Policy for Water Quality Control For Recycled Water (Recycled Water Policy),² most recently amended in 2018, includes additional requirements to address salt and nutrients. Under this policy, Regional Water Boards are required to assess basins or subbasins within the region where water quality is threatened by salt and nutrients, and where management is required. In basins or subbasins where salt and nutrients are identified as a threat, a salt and nutrient management plan (SNMP) or equivalent management plan is required; this plan can address other constituents in addition to salt and nutrients.

45 Water Quality Control Plan for the North Coast Region

The Water Quality Control Plan for the North Coast Region (Basin Plan) is a regulatory tool used by the North Coast Regional Water Quality Control Board (Regional Water Board) to protect water quality within the North Coast Region. The Basin Plan is adopted by the NCRWQCB and approved by the State Water Resources Control Board; the water quality standards are approved by the United States Environmental Protection Agency (USEPA). Within the Basin Plan, beneficial uses of water, water quality objectives, including an antidegradation policy and plans for implementing

¹{North Coast Regional Water Quality Control Board. 2018. "Water Quality Control Plan for the North Coast Region". Available: https://www.waterboards.ca.gov/northcoast/water_issues/programs/basin_plan/}

²{SWRCB Resolution No. 2018-0057 and "Amendment to the Policy for Water Quality Control For Recycled Water". Available: https://www.waterboards.ca.gov/board_decisions/adopted_orders/resolutions/2018/121118_7_final_amendment_oal.pdf}

- ⁵² protections are included. Table 2-1 of the Basin Plan designates the following beneficial uses for
- ⁵³ all groundwater (California North Coast Regional Water Quality Control Board 2018):
- Municipal and Domestic Supply (MUN)
- Agricultural Supply (AGR)
- Industrial Service Supply (IND)
- Native American Culture (CUL)
- 58 Potential beneficial uses of groundwater include:
- Industrial Process Supply (PRO)
- Aquaculture (AQUA)

⁶¹ For chemical constituents in waters with MUN beneficial uses, the Basin Plan specifies that no ⁶² waters are to exceed the MCL in Title 22 of the California Code of Regulations (CCR). The Basin

- ⁶² Waters are to exceed the MCL in Title 22 of the California Code of Regulations (CCR). The Basin ⁶³ Plan also includes numeric water quality objectives, specifically for groundwaters in the Butte Valley
- ⁶⁴ hydrologic area.

⁶⁵ A complete list of constituents, comparison concentrations and sources are listed in Table 2.

Water Quality Assessment

67 Data Sources

Water quality data was obtained from several databases and supplemented with data provided
by local organizations and community members. The majority of the water quality data used in
the assessment was sourced from the SWRCB's Groundwater Ambient Monitoring and Assessment Program (GAMA), a database containing datasets from agencies including the Department
of Pesticide Regulation (DPR), Department of Water Resources (DWR), the State Water Board,
Lawrence Livermore National Laboratory (LLNL) and the United States Geological Survey (USGS).
Additional data in the Butte Valley Wildlife Area was directly provided by the California Department

⁷⁵ of Fish and Wildlife.

⁷⁶ The datasets in GAMA with information in Butte Valley Groundwater Basin are:

- The Public Water System Wells dataset includes wells regulated by the State Water Board's Division of Drinking Water (DDW). This dataset includes information for active and inactive drinking water sources with 15 or more connections or more than 25 people per day.
- National Water Information System (NWIS), a dataset provided by USGS with samples
 from water supply wells and reported quarterly to the State Water Board's data management
 system, GeoTracker.
- Monitoring wells regulated by the State Water Board includes wells under different regulatory
 programs, with data available for download through GeoTracker. There are monitoring wells
 in Butte Valley Basin for the following programs:

- Leaking Underground Storage Tank (LUST) Cleanup sites
 - Cleanup Program Sites
 - Land Disposal Sites

87

88

- GAMA's Priority Basin Project, a State Water Board, USGS and LLNL initiative to assess
 groundwater quality statewide. Data primarily collected from public water system wells but
 private domestic, monitoring and irrigation wells are also sampled.
- **DWR's Water Data Library**, a dataset including groundwater quality and depth data with samples from multiple well types including irrigation, stock, domestic and public supply.
- Department of Pesticide Regulation's Groundwater Protection program, a compilation of information from DPR and other public agencies from domestic, public supply and irrigation wells.

Selection of Numeric Thresholds

Numeric thresholds are used with well data to evaluate groundwater quality. These numeric standards are selected to satisfy all relevant groundwater quality standards and objectives; the general selection approach used is consistent with recommendations by the State Water Board for determination of assessment thresholds for groundwater [Reference]. More than one water quality objective or standard may apply to a constituent and a prioritization process is used to select the numeric threshold value. Where available, the strictest value, of the federal and state regulated water quality standards, and water quality objectives specified in the Basin Plan, is used.

- ¹⁰⁵ The following sources were used in establishing the numeric thresholds:
- ¹⁰⁶ i) Basin Plan numeric water quality objectives
- ¹⁰⁷ Specific groundwater quality objectives are defined in the Basin Plan for specific conduc-¹⁰⁸ tance, pH, hardness and boron. These limits are listed in Table 1 below.
- ¹⁰⁹ ii) State and Federal Maximum Contaminant Levels (MCLs)
- 110 MCL-CA: State of California MCLs
- MCL-US: Federal MCLs

Per the Basin Plan, groundwaters in the Butte Valley hydrologic area have a designated beneficial use as domestic or municipal water supply (MUN) beneficial use and must not exceed the maximum contaminant levels (MCLs) and secondary maximum contaminant levels (SMCLs) defined in Title 22 of the California Code of Regulations (CCR). The strictest value of the state and federal MCLs and SMCLs is used. ¹¹⁷ The complete list of constituents and corresponding sources and values for comparison concen-¹¹⁸ trations used in the water quality analysis can be found in Table 2.

Constituent	Limit Type	Value
Specific Conductance (mmhos) at 77 degrees F	90% Upper Limit	800
Specific Conductance (mmhos) at 77 degrees F	50% Upper Limit	400
pH	Maximum	8.5
pH	Minimum	6.5
Boron (mg/L)	90% Upper Limit	0.2
Boron (mg/L) Hardness (mg/L)	50% Upper Limit 50% Upper Limit	0.1 120

 Table 1: Basin Plan Specific Water Quality Objectives

 for Groundwaters in the Butte Valley Hydrologic Area

^a 90% upper and lower limits represent the 90 percentile values for a calendar year. 90% or more of the values must be less than or equal to an upper limit and greater than or equal to a lower limit

^b 50% upper and lower limits represent the 50 percentile values of the monthly means for a calendar year. 50% or more of the monthly means must be less than or equal to an upper limit and greater than or equal to a lower limit

Full Name	MCL	Units	Source
1,1 Dichloroethane (1,1 DCA)	5	ug/L	Title 22 Table 64444-A
1,1 Dichloroethylene (1,1 DCE)	6	ug/L	Title 22 Table 64444-A
1,1,1 Trichloroethane	200	ug/L	Title 22 Table 64444-A
1,1,2 Trichloro-1,2,2-Trifluoroethane (Freon	1.2	mg/L	Title 22 Table 64444-A
113)		-	
1,1,2 Trichloroethane	5	ug/L	Title 22 Table 64444-A
1,1,2,2 Tetrachloroethane (PCA)	1	ug/L	Title 22 Table 64444-A
1,2 Dibromo-3-chloropropane (DBCP)	0.2	ug/L	Title 22 Table 64444-A
1,2 Dibromoethane (EDB)	0.05	ug/L	Title 22 Table 64444-A
1,2 Dichlorobenzene (1,2-DCB)	600	ug/L	Title 22 Table 64444-A
1,2 Dichloroethane (1,2 DCA)	0.5	ug/L	Title 22 Table 64444-A
1,2 Dichloropropane (1,2 DCP)	5	ug/L	Title 22 Table 64444-A
1,2,3 Trichloropropane (1,2,3 TCP)	0.005	ug/L	Title 22 Table 64444-A
1,2,4 Trichlorobenzene (1,2,4 TCB)	5	ug/L	Title 22 Table 64444-A
1,2,4 Trimethylbenzene	330	ug/L	NL
1,3 Dichlorobenzene	600	ug/L	US-HAL
1,3 Dichloropropene	0.5	ug/L	Title 22 Table 64444-A
1,3,5 Trimethylbenzene	330	ug/L	NL
1,4 Dichlorobenzene (p-DCB)	5	ug/L	Title 22 Table 64444-A
1,4 Dioxane	1	-	HBSL
2 Chlorotoluene	140	ug/L	US-HAL
		ug/L	
2,3,7,8 TCDD	0.00003	ug/L	MCL-US
2,4 Dichlorophenoxyacetic acid (2,4 D)	70	ug/L	Title 22 Table 64444-A
2,4,5 TP (Silvex)	50	ug/L	Title 22 Table 64444-A
2,4,6 Trinitrotoluene (TNT)	1	ug/L	US-HAL
4 Chlorotoluene	140	ug/L	HBSL
4,4' DDD	0.1	ug/L	CA-CPF
4,4' DDE	0.1	ug/L	CA-CPF
4,4' DDT	0.1	ug/L	CA-CPF
Acetone	6300	ug/L	RfD
Alachlor	2	ug/L	Title 22 Table 64444-A
Aldicarb	7	ug/L	HBSL
Aldicarb Sulfone	7	ug/L	HBSL
Aldicarb sulfoxide	7	ug/L	HBSL
Alpha-Benzene Hexachloride (Alpha-BHC)	0.15	ug/L	CA-Prop65
Aluminum	200	ug/L	Title 22 Table 64449-A
Ammonia	30	mg/L	US-HAL
Antimony	6	ug/L	Title 22 Table 64431-A
Arsenic	10	ug/L	Title 22 Table 64431-A
Asbestos	7	MFL	Title 22 Table 64431-A
Atrazine	1	ug/L	Title 22 Table 64444-A
Azinphos Ethyl	10	ug/L	HBSL
Barium	1	mg/L	Title 22 Table 64431-A
Continued on next page		U	

Full Name	MCL	Units	Source
Bensulfuron Methyl	1000	ug/L	HBSL
Bentazon	18	ug/L	Title 22 Table 64444-A
Benzene	1	ug/L	Title 22 Table 64444-A
Benzo(a)pyrene	0.2	ug/L	Title 22 Table 64444-A
Beryllium	4	ug/L	Title 22 Table 64431-A
Beta-Benzene Hexachloride (Beta-BHC)	0.25	ug/L	CA-Prop65
Boron	0.1 (50% UL), 0.2 (90% UL)	mg/L	Basin Plan Table 3-1
Bromacil	70	ug/L	US-HAL
Bromate	10	ug/L	MCL-US
Bromodichloromethane (THM)	80	ug/L	MCL
Bromoform (THM)	80	ug/L	MCL
Cadmium	5	ug/L	Title 22 Table 64431-A
Carbaryl (1-naphthyl methylcarbamate)	40	ug/L	HBSL
Carbofuran	18	ug/L	Title 22 Table 64444-A
Carbon Disulfide	160	ug/L	HBSL
Carbon Tetrachloride	0.5	ug/L	Title 22 Table 64444-A
Chlorate	800	ug/L	NAS-HAL
Chlordane	0.1	ug/L	Title 22 Table 64444-A
Chloride	500	mg/L	Title 22 Table 64449-B
Chlorite	1	mg/L	MCL-US
Chlorobenzene	70	ug/L	Title 22 Table 64444-A
Chloroform (THM)	80	ug/L	MCL
Chloropicrin	12	ug/L	NAS-HAL
Chromium	50	ug/L	Title 22 Table 64431-A
Chromium, Hexavalent (Cr6)	20	ug/L	HBSL
cis-1,2 Dichloroethylene	6	ug/L	Title 22 Table 64444-A
Copper	1	mg/L	Title 22 Table 64449-A
Cyanazine	0.3	ug/L	HBSL
Cyanide (CN)	150	ug/L	Title 22 Table 64431-A
Cypermethrin	40	ug/L	HBSL
Dacthal	70	ug/L	HBSL
Dalapon	200	ug/L	Title 22 Table 64444-A
Deethylatrazine	50	ug/L	CA-Prop65
Di(2-ethylhexyl)adipate	0.4	mg/L	Title 22 Table 64444-A
Di(2-ethylhexyl)phthalate (DEHP)	4	ug/L	Title 22 Table 64444-A
Diazinon	1.2	ug/L	HBSL
Dibromochloromethane (THM)	80	ug/L	MCL
Dicamba	210	ug/L	RfD
Dichlorodifluoromethane	1	mg/L	HBSL
Dichloromethane (Methylene Chloride)	5	ug/L	Title 22 Table 64444-A
Dichlorprop	300	ug/L	HBSL
Dichlorvos (DDVP)	0.4	ug/L	HBSL
Continued on next page			

Full Name	MCL	Units	Source
Dieldrin	0.002	ug/L	HBSL
Diesel	100	ug/L	US-HAL
Dimethoate	2	ug/L	HBSL
Dinoseb	7	ug/L	Title 22 Table 64444-A
Diquat	20	ug/L	Title 22 Table 64444-A
Diuron	2	ug/L	HBSL
Endosulfan I	42	ug/L	RfD
Endosulfan II	42	ug/L	RfD
Endosulfan Sulfate	42	ug/L	RfD
Endothall	100	ug/L	Title 22 Table 64444-A
Endrin	2	ug/L	Title 22 Table 64444-A
EPTC	200	ug/L	HBSL
Ethylbenzene	300	ug/L	Title 22 Table 64444-A
Ethylene glycol	14	mg/L	US-HAL
Fecal Coliform (bacteria)	0.99	Count	MCL
Fenamiphos	0.7	ug/L	HBSL
Fluoride	2	mg/L	Title 22 Table 64431-A
Foaming Agents (MBAS)	0.5	mg/L	Title 22 Table 64449-A
Fonofos	10	ug/L	HBSL
Formaldehyde	100	ug/L	US-HAL
Gasoline	5	ug/L	US-HAL
Glyphosate (Round-up)	700	ug/L	MCL-US
Gross Alpha radioactivity	15	pCi/L	Title 22 Table 64442
Gross beta	50	pCi/L	MCL-US
Guthion (Azinphos Methyl)	10	ug/L	HBSL
Heptachlor	0.01	ug/L	Title 22 Table 64444-A
Heptachlor Epoxide	0.01	ug/L	Title 22 Table 64444-A
Hexachlorobenzene (HCB)	1	ug/L	MCL-US
Hexachlorobutadiene	0.9	ug/L	HBSL
Hexachlorocyclopentadiene	50	ug/L	Title 22 Table 64444-A
Hexazinone	400	ug/L	HBSL
lodide	1190	ug/L	NAS-HAL
Iprodione	0.8	ug/L	HBSL
Iron	300	ug/L	Title 22 Table 64449-A
Isopropylbenzene (Cumene)	770	ug/L	HBSL
Kerosene	100	ug/L	US-HAL
Lead	15	ug/L	AL
Lindane (Gamma-BHC)	0.2	ug/L	Title 22 Table 64444-A
Linuron	5	ug/L	HBSL
Malathion	500	ug/L	HBSL
Manganese	50	ug/L	Title 22 Table 64449-A
Mercury	2	ug/L ug/L	Title 22 Table 64431-A
Metalaxyl	500	ug/L ug/L	HBSL
		uy/L	TIDOL
Continued on next page			

Full Name	MCL	Units	Source
Methomyl	200	ug/L	HBSL
Methoxychlor	30	ug/L	Title 22 Table 64444-A
Methyl Bromide (Bromomethane)	10	ug/L	US-HAL
Methyl Isobutyl Ketone (MIBK)	120	ug/L	NL
Metolachlor	700	ug/L	HBSL
Metribuzin	90	ug/L	HBSL
Molinate	20	ug/L	Title 22 Table 64444-A
Molybdenum	40	ug/L	US-HAL
MTBE (Methyl-tert-butyl ether)	5	ug/L	Title 22 Table 64449-A
Naled	10	ug/L	HBSL
Naphthalene	17	ug/L	HBSL
Napropamide	800	ug/L	HBSL
n-Butylbenzene	260	ug/L	NL
Nickel	100	ug/L	Title 22 Table 64431-A
Nitrate as N	10	mg/L	Title 22 Table 64431-A
Nitrate+Nitrite	10	mg/L	Title 22 Table 64431-A
Nitrite as N	1	mg/L	Title 22 Table 64431-A
N-Nitrosodiethylamine (NDEA)	0.01	ug/L	CA-CPF
N-Nitrosodimethylamine (NDMA)	0.01	ug/L	CA-CPF
N-Nitrosodi-N-Propylamine (NDPA)	0.01	ug/L	CA-CPF
Norflurazon	10	ug/L	HBSL
n-Propylbenzene (Isocumene)	260	ug/L	NL
Octogen (HMX)	0.35	mg/L	US-HAL
Oxamyl	50	ug/L	Title 22 Table 64444-A
Oxyfluorfen	20	ug/L	HBSL
Parathion	0.02	ug/L	HBSL
PCNB	21	ug/L	RfD
Pentachlorophenol (PCP)	1	ug/L	MCL-US
Perchlorate	6	ug/L	Title 22 Table 64431-A
Perfluorooctanoic acid	5.1	ng/L	US-HAL
Perfluorooctanoic sulfonate	6.5	ng/L	NL
Permethrin	4	ug/L	HBSL
pH	6.5-8.5	-log[H+]	Basin Plan Table 3-1
Phorate	4	ug/L	HBSL
Picloram	0.5	mg/L	Title 22 Table 64444-A
Polychlorinated Biphenyls (PCBs)	0.5	ug/L	MCL-US
Prometon	400	ug/L	HBSL
Prometryn	300	ug/L	HBSL
Propachlor (2-Chloro-N-isopropylacetanilide)	90	ug/L	HBSL
Propanil	6	ug/L	HBSL
Propargite	1	ug/L	HBSL
Radium 226	5	pĊi/L	Title 22 Table 64442
Radium 228	5	pCi/L	Title 22 Table 64442
Continued on next page			

Full Name	MCL	Units	Source
Radon 222	4000	pCi/L	MCL-US
RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)	0.3	mg/L	US-HAL
sec-Butylbenzene	260	ug/L	NL
Selenium	50	ug/L	Title 22 Table 64431-A
Silver	100	ug/L	Title 22 Table 64449-A
Simazine	4	ug/L	Title 22 Table 64444-A
Sodium	50	mg/L	AL
Specific Conductivity	400 (50% UL) -	umhos	Basin Plan Table 3-1
	800 (90% UL)		
Strontium	4000	ug/L	US-HAL
Strontium 90	8	pČi/L	Title 22 Table 64443
Styrene	100	ug/L	Title 22 Table 64444-A
Sulfate	500	mg/L	Title 22 Table 64449-B
tebuthiuron	1000	ug/L	HBSL
tert-Butyl alcohol (TBA)	12	ug/L	NL
tert-Butylbenzene	260	ug/L	NL
Tetrachloroethene (PCE)	5	ug/L	Title 22 Table 64444-A
Thallium	2	ug/L	Title 22 Table 64431-A
Thiabendazole	231	ug/L	ННВР
Thiobencarb	1	ug/L	Title 22 Table 64449-A
Toluene	150	ug/L	Title 22 Table 64444-A
Total Coliform Bacteria	0.99	Count	MCL
Total Dissolved Solids	1000	mg/L	Title 22 Table 64449-B
Total Trihalomethanes	80	ug/L	MCL-US
Toxaphene	3	ug/L	Title 22 Table 64444-A
trans-1,2, Dichloroethylene	10	ug/L	Title 22 Table 64444-A
Trichlopyr	400	ug/L	HBSL
Trichloroethene (TCE)	5	ug/L	Title 22 Table 64444-A
Trichlorofluoromethane (Freon 11)	150	ug/L	Title 22 Table 64444-A
Trifluralin	20	ug/L	HBSL
Tritium	20000	pČi/L	Title 22 Table 64443
Uranium	20	pCi/L	Title 22 Table 64442
Vanadium	50	ug/L	RfD
Vinyl Chloride	0.5	ug/L	Title 22 Table 64444-A
Warfarin	2	ug/L	HBSL
Xylene, Isomers m & p	1750	ug/L	Title 22 Table 64444-A
Xylenes (total)	1750	ug/L	Title 22 Table 64444-A
Zinc	5	mg/L	Title 22 Table 64449-A
			1

Rank	Comparison	Description
	Concentration	
1	Basin Plan /	Basin Plan Groundwater Requirements in Table 3-1 and specific Title
	Title 22	22 tables
2	MCL-CA	California drinking water maximum contaminant level
3	MCL-US	Federal drinking water maximum contaminant level
4	AL-US	Federal Action Level
5	HBSL	Cancer or non-cancer Health Based Screening Level
6	HHBP	Chronic non-cancer Human Health Benchmark for Pesticides
7	US-HAL	Federal Health Advisory Level
8	RfD	Reference Dose as a drinking water level
9	NAS-HAL	National Academy of Science Health Advisory Level
10	CA-CPF	California Cancer Potency Factor
11	CA-Prop. 65	California Proposition 65 Safe Harbor Levels as a drinking water level
12	SMCL	Secondary MCL
13	NL	Notification Level

120 Calculations

119

¹²¹ Specific water quality objectives for the Butte Valley hydrologic area groundwaters, as defined in the

Basin Plan, have specific limits and calculation requirements associated with specific conductance,
 hardness and boron. Per the Basin Plan, the 50% upper limit and 90% upper limit are defined as
 follows:

• 50% upper limits represent "the 50 percentile values of the monthly means for a calendar year. 50% or more of the monthly means must be less than or equal to an upper limit and greater"

 90% upper limits represent "the 90 percentile values for a calendar year. 90% or more of the values must be equal to an upper limit and greater than or equal to a lower limit".

The monthly means of specific conductance and boron measurements were compared to the 50% and 90% upper limits.

Filtering Process

To analyze groundwater quality, several filters were applied for relevance and quality. Though groundwater quality data for the Basin is available from 1952, data was limited to only include information collected in the past 30 years. Restricting the timespan from which data was collected increases confidence in data collection methods and quality of the data and focuses on information that is reflective of current groundwater quality conditions.

Groundwater quality for each constituent was analyzed by comparing the well data to the corresponding comparison concentration. Maps showing the location of wells where samples were collected were generated for each constituent. The maximum concentration sampled at each well

is displayed on the map as one of the following groups:

- a) Not detected
- b) Detected but below half of the comparison concentration
- c) Detected and above half of the comparison concentration
- d) Above the comparison concentration

The number of samples in each category is displayed in the map's legend. Two iterations of map generation were conducted with the following scenarios:

- 1. Data is limited to those collected in the past 30 years only (1989-2019)
- ¹⁵⁰ 2. Data is limited to wells that have more than one data point in the past 30 years (1989-2019)

For the second scenario, where data is limited to wells that have more than one data point in the past 30 years, timeseries are generated for each constituent and well to identify changes over time in groundwater quality at a location.

¹⁵⁴ The following sections contain the maps produced from these analyses.

Results

¹⁵⁶ Constituents of Concern (COCs)

¹⁵⁷ Constituents of Concern (COCs) were identified based on visual identification of potential ground-¹⁵⁸ water quality issues using the maps generated in this assessment, identification of common con-¹⁵⁹ stituents of concern, and through discussion with stakeholders. Resulting from this analysis and ¹⁶⁰ discussion with stakeholders, the full list of constituents of concern (COCs) were:

- 161 1. Arsenic
- ¹⁶² 2. Boron
- ¹⁶³ **3. Benzene**
- ¹⁶⁴ 4. 1,2 Dibromoethane (EDB)
- ¹⁶⁵ 5. Nitrate as N
- ¹⁶⁶ 6. Specific Conductivity

A series of maps for each COC, with water quality data from the past 30 years (1990-2020), show 167 the location of tested wells and whether the maximum concentration ever recorded in that well 168 has exceeded the MCL. In Butte Valley, the water quality source database categorized some wells 169 as either municipal or monitoring. Municipal wells are a public supply well related to a city or 170 town. Monitoring wells are used for monitoring groundwater, such as for site cleanup programs or 171 Irrigated Lands Regulatory Program. Time series graphs included in this section plot the concen-172 tration of the COC versus time for applicable wells. For easy visual assessment, each graph only 173 includes seven wells. Multiple graphs were created for each constituent and are arranged from the 174 maximum sampled concentration in each well, to the lowest. 175

Figure 1 shows all wells that have been tested for Total Arsenic, even if only one monitoring event has occurred. Figure 2 filters the wells for those with two or more monitoring events. In the past 30 years, two wells in the northeast section of the valley have high concentrations. Timeseries of wells

in Figure 2 show that the affected municipal well has decreasing arsenic concentrations (Figure 3). 179 Figure 4 shows a number of high Dissolved Boron wells, though many of these wells have only 180 one monitoring event and a trend analysis cannot be completed. Figure 5 has two high boron 181 wells available for trend analysis. The two wells have decreasing or steady boron concentrations 182 (Figure 3). High benzene in Butte Valley is associated with cleanup sites near Dorris (Figure 7 183 and Figure 8). The timeseries graphs show that benzene concentrations have been decreasing 184 over time (Figure 9, Figure 10, and Figure 11). High 1,2-Dibromoethane appears in the same well 185 cluster with the high benzene (Figure 12 and Figure 13). 1,2-Dibromoethane concentrations are 186 either decreasing or not detected (Figure 14, Figure 15, and Figure 16). Nitrate is elevated in the 187 south part of the valley (Figure 17 and Figure 18). The timeseries show that nitrate concentrations 188 have been generally decreasing through time (Figure 19 and Figure 20). Specific conductivity is 189 low compared to the 90% Upper Limit defined by the Basin Plan (Figure 21 and Figure 22). The 190 timeseries graphs show that specific conductivity is relatively stable but higher than the 50% Upper 191 Limit defined by the Basin Plan (Figure 23 and Figure 24). 192

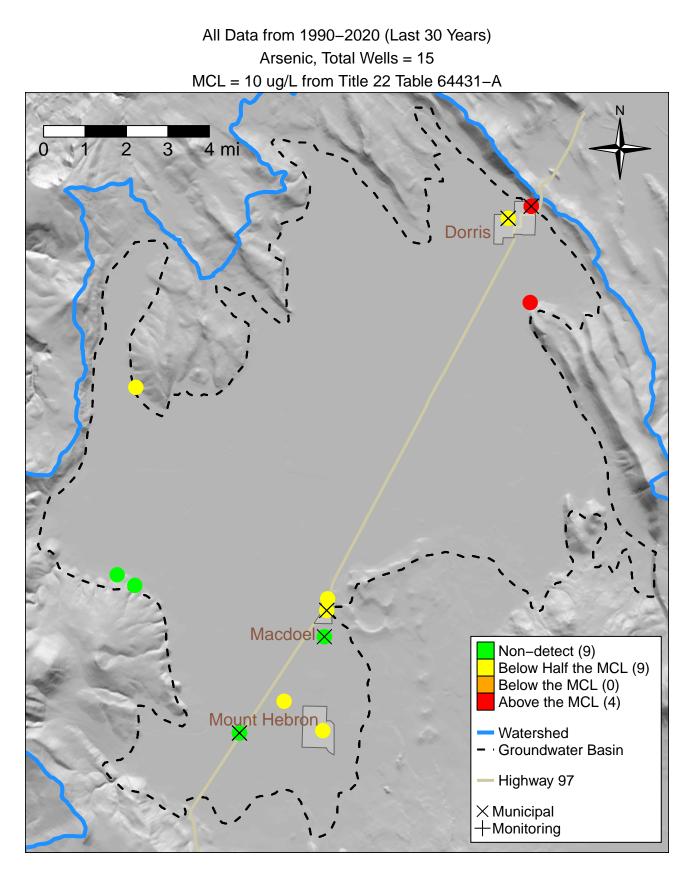


Figure 1: Groundwater Quality Observations of the Constituent Short List

Wells with two or more monitoring events, from 1990–2020 (Last 30 Years) Arsenic, Total Wells = 4 MCL = 10 ug/L from Title 22 Table 64431–A

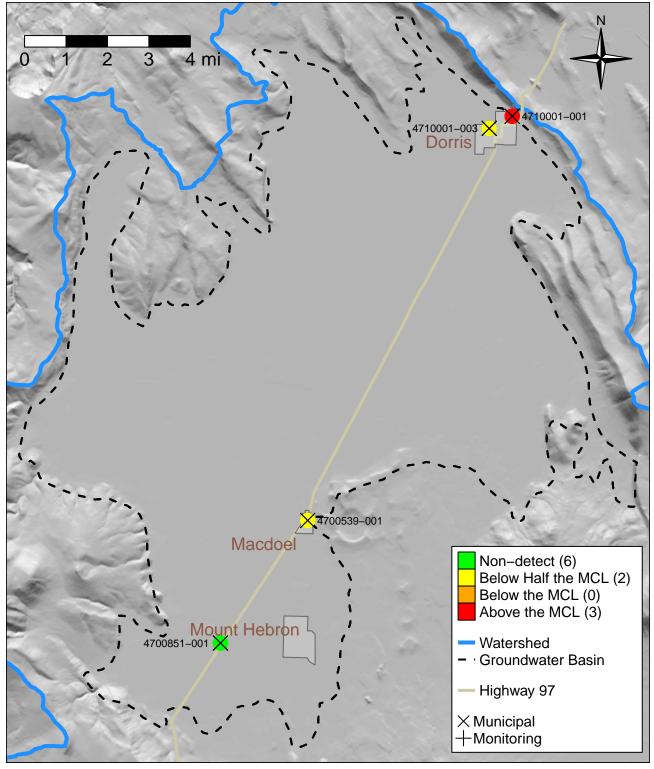
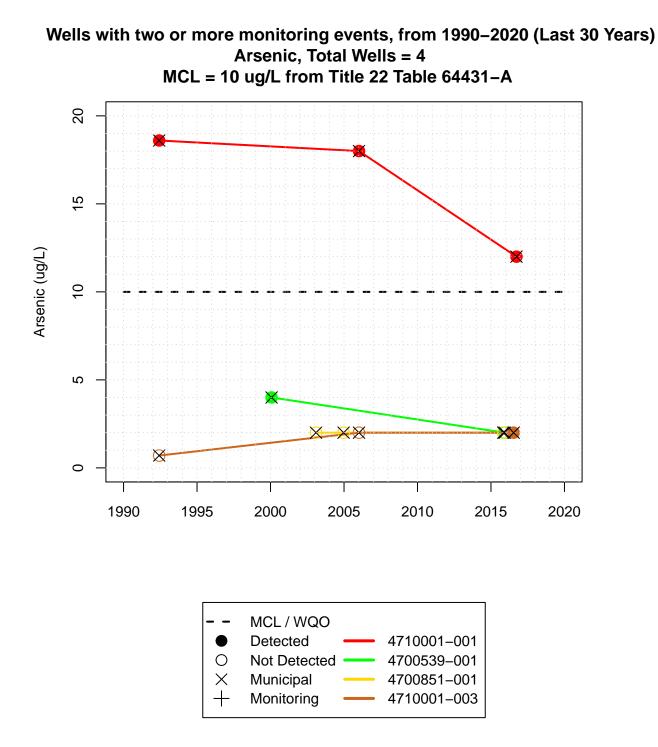
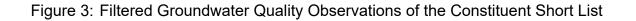




Figure 2: Filtered Groundwater Quality Observations of the Constituent Short List

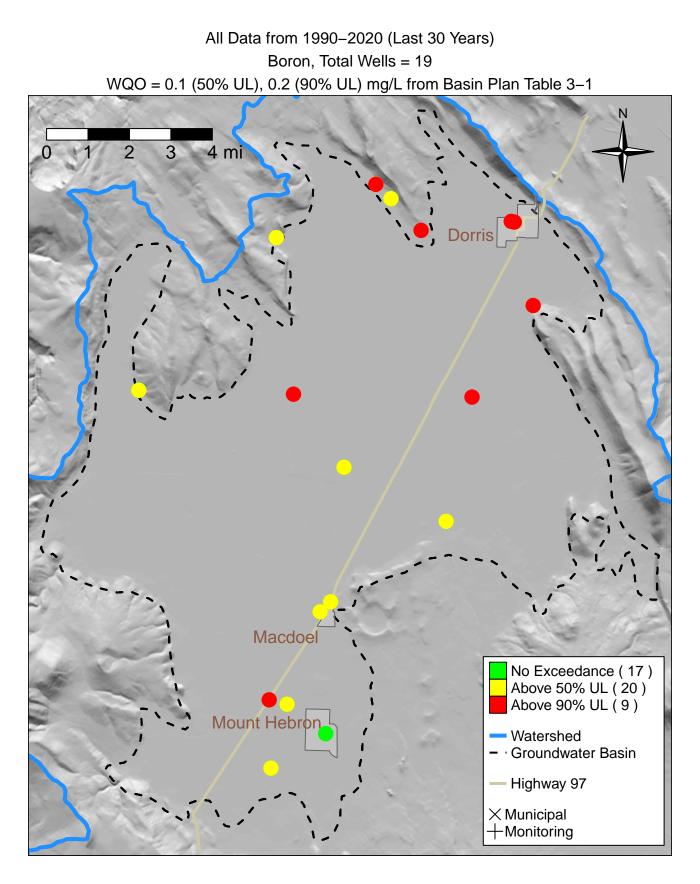
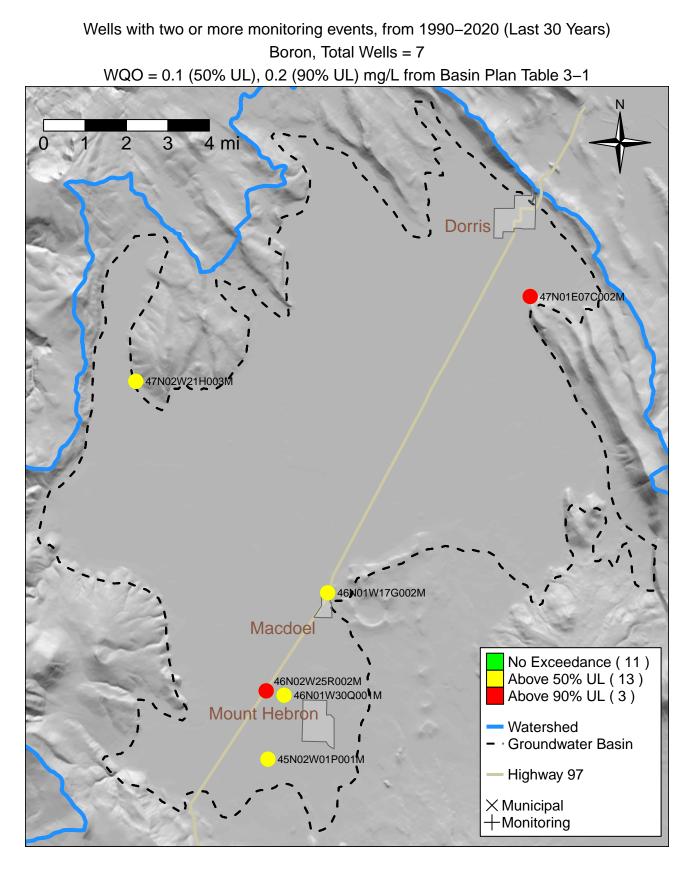
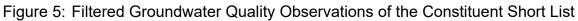
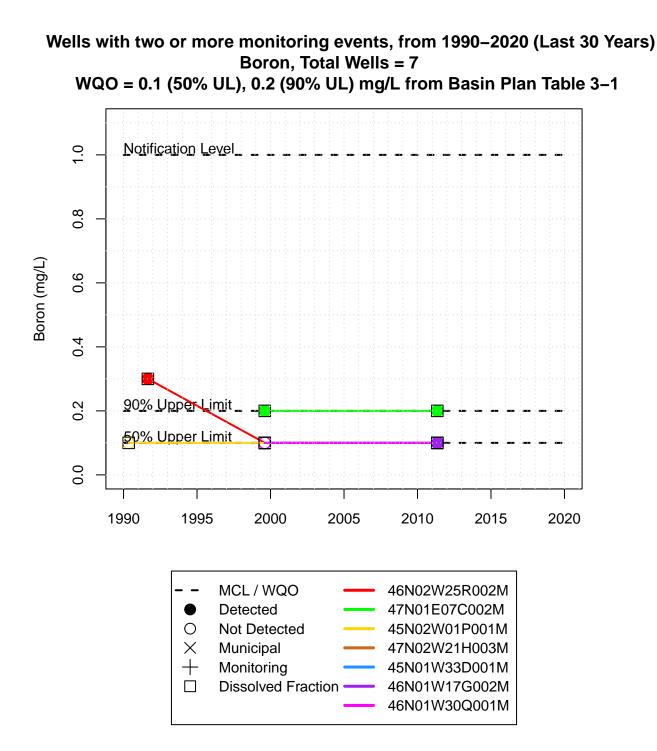





Figure 4: Groundwater Quality Observations of the Constituent Short List

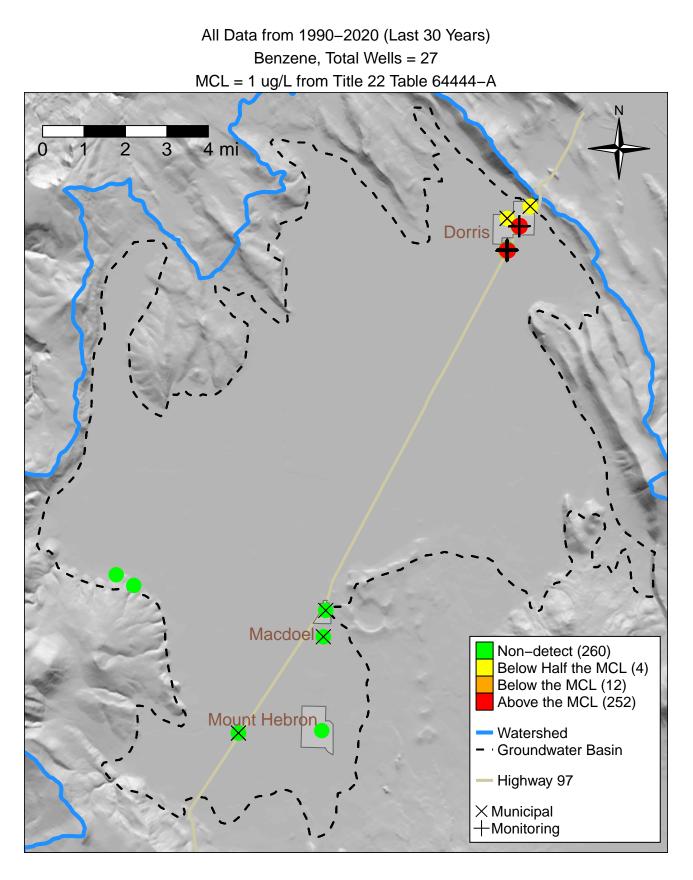


Figure 7: Groundwater Quality Observations of the Constituent Short List

Wells with two or more monitoring events, from 1990–2020 (Last 30 Years) Benzene, Total Wells = 20 MCL = 1 ug/L from Title 22 Table 64444–A

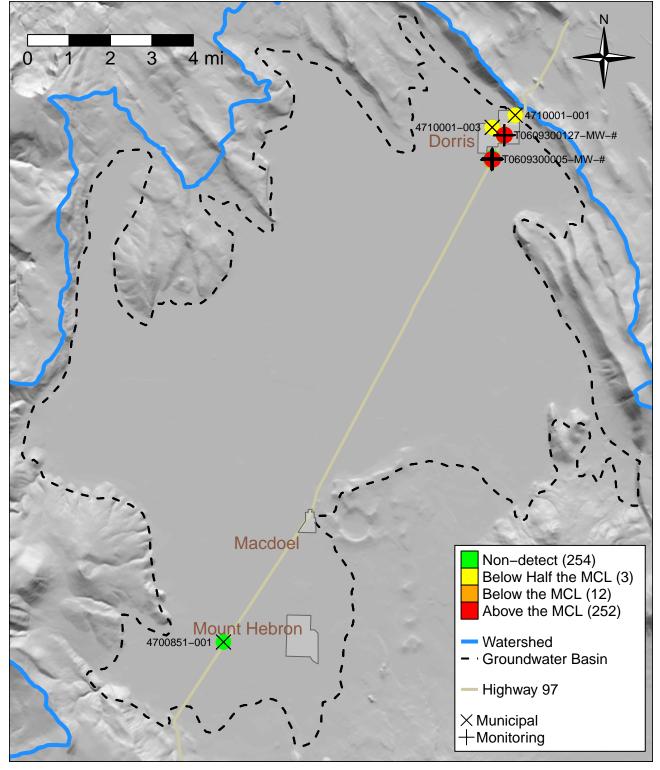


Figure 8: Filtered Groundwater Quality Observations of the Constituent Short List

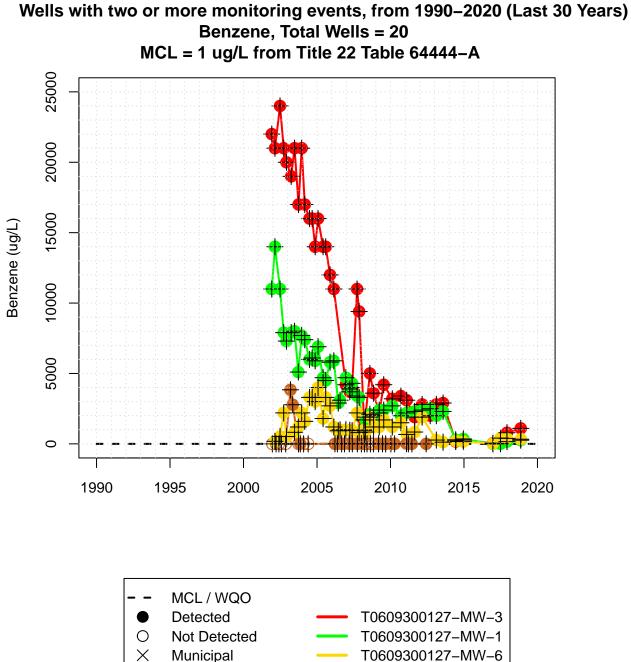


Figure 9: Filtered Groundwater Quality Observations of the Constituent Short List

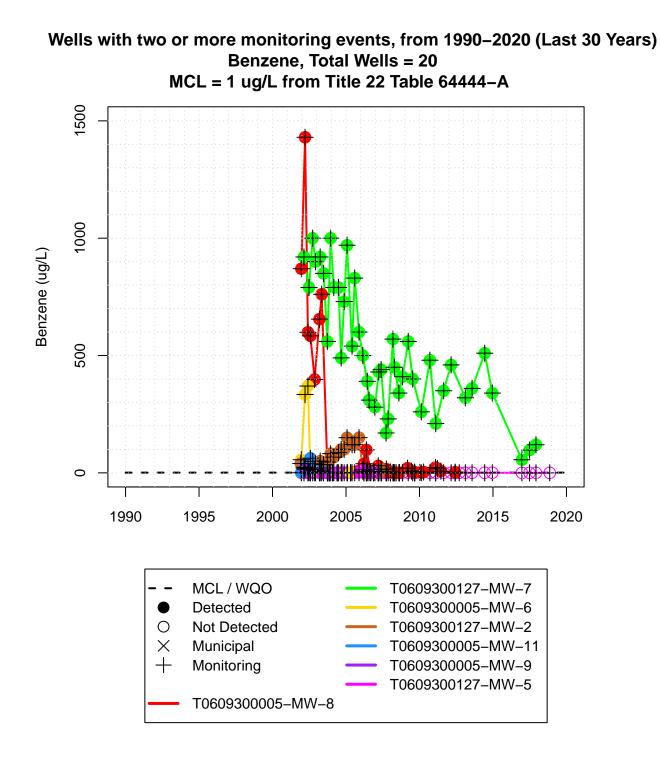
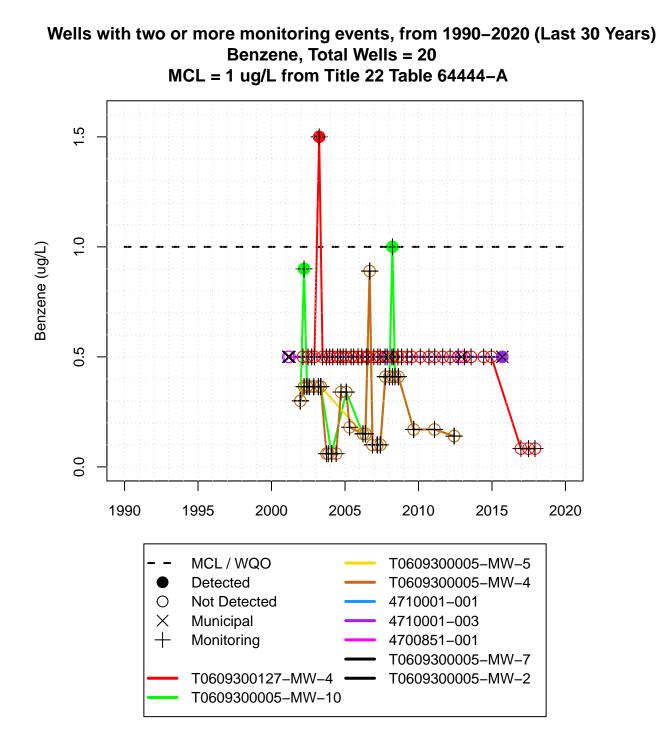



Figure 10: Filtered Groundwater Quality Observations of the Constituent Short List

Figure 11: Filtered Groundwater Quality Observations of the Constituent Short List

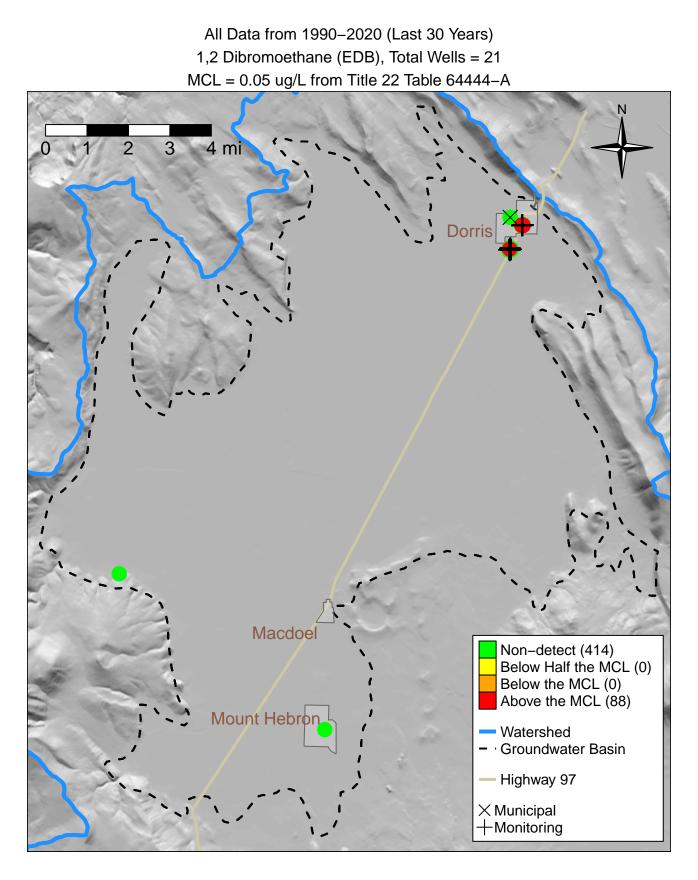


Figure 12: Groundwater Quality Observations of the Constituent Short List

Wells with two or more monitoring events, from 1990–2020 (Last 30 Years) 1,2 Dibromoethane (EDB), Total Wells = 17 MCL = 0.05 ug/L from Title 22 Table 64444–A

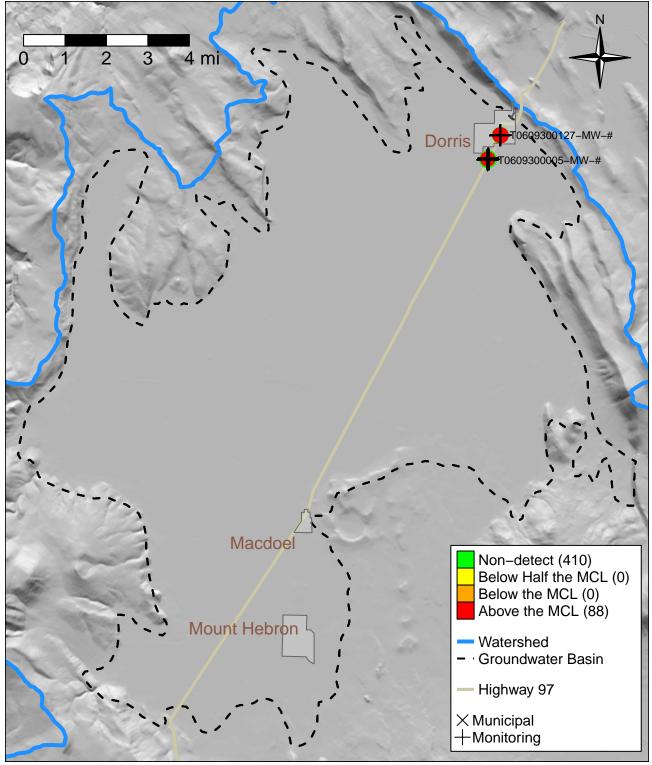
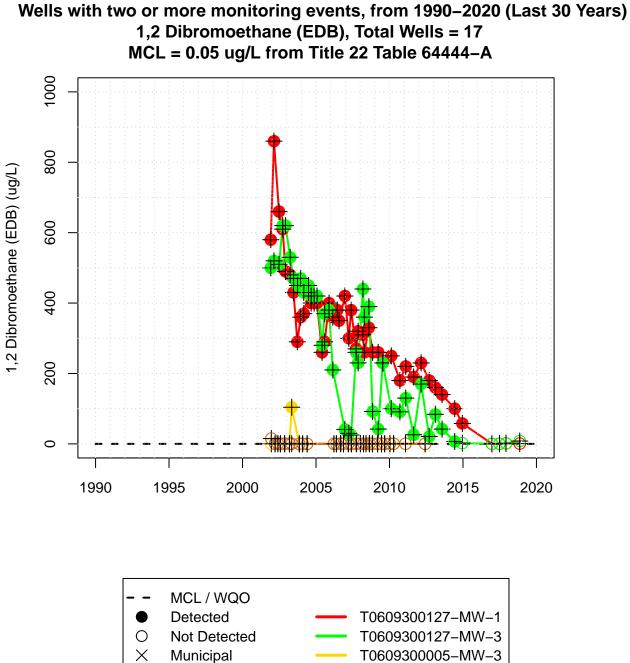
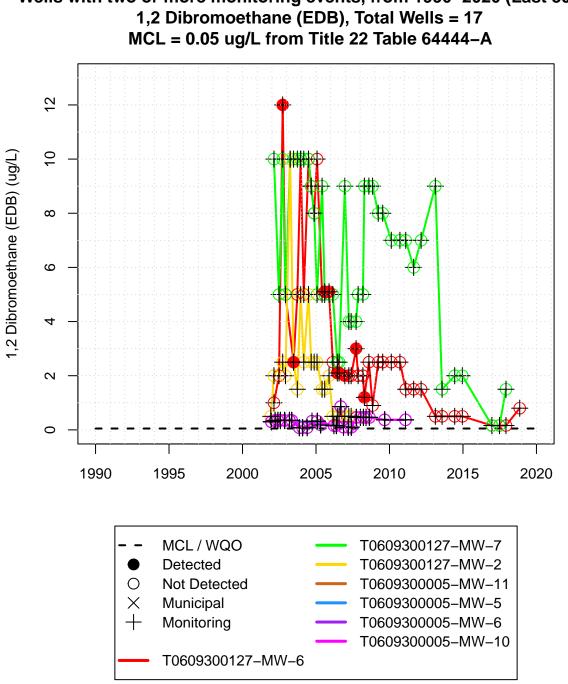


Figure 13: Filtered Groundwater Quality Observations of the Constituent Short List

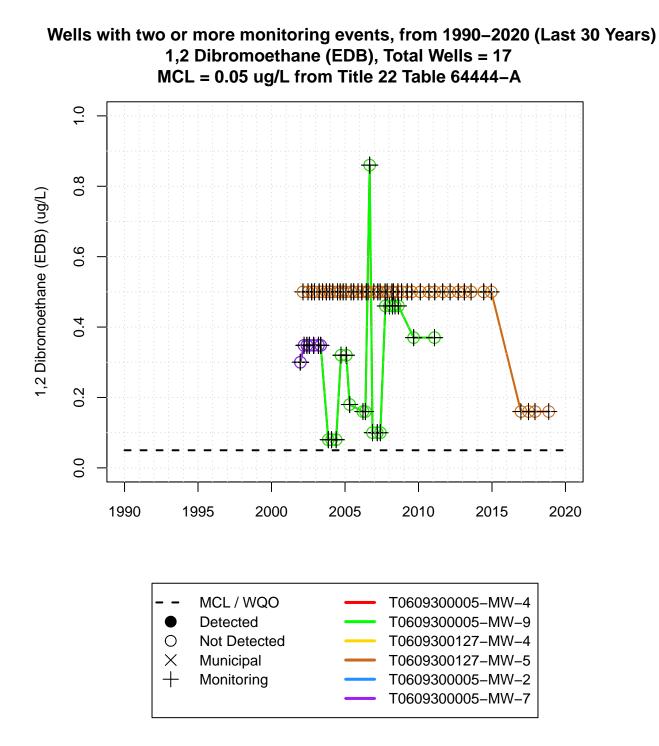


Figure 14: Filtered Groundwater Quality Observations of the Constituent Short List

Wells with two or more monitoring events, from 1990-2020 (Last 30 Years)

Figure 15: Filtered Groundwater Quality Observations of the Constituent Short List

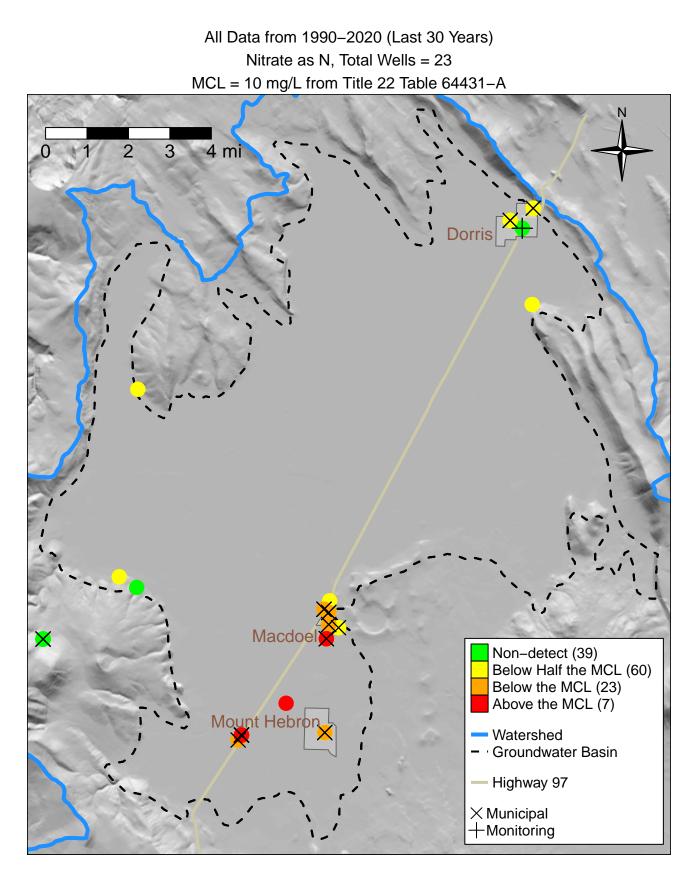


Figure 17: Groundwater Quality Observations of the Constituent Short List

Wells with two or more monitoring events, from 1990–2020 (Last 30 Years) Nitrate as N, Total Wells = 12 MCL = 10 mg/L from Title 22 Table 64431–A

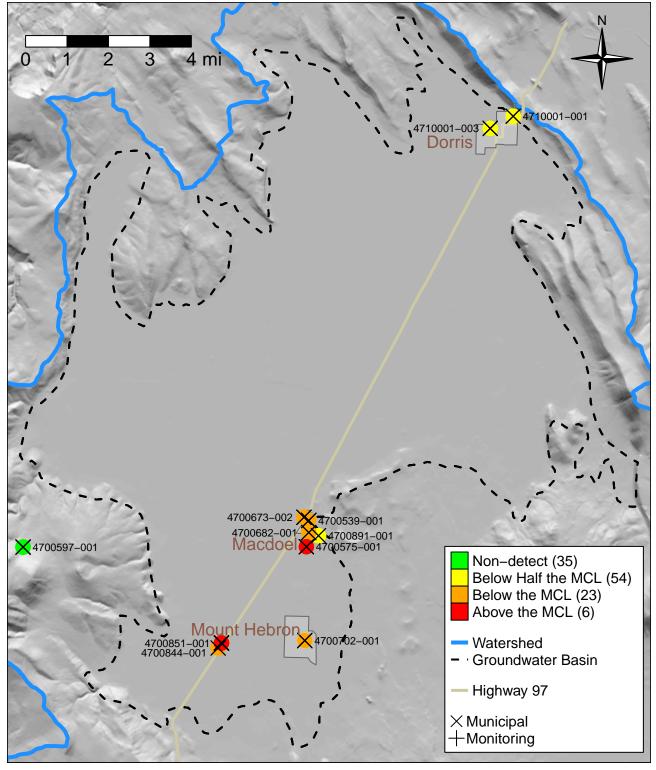
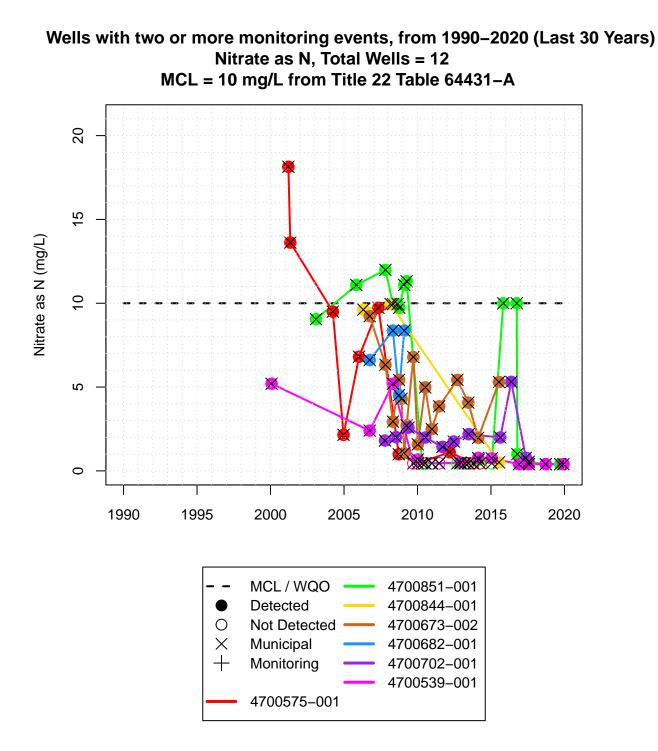
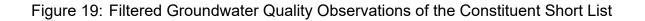
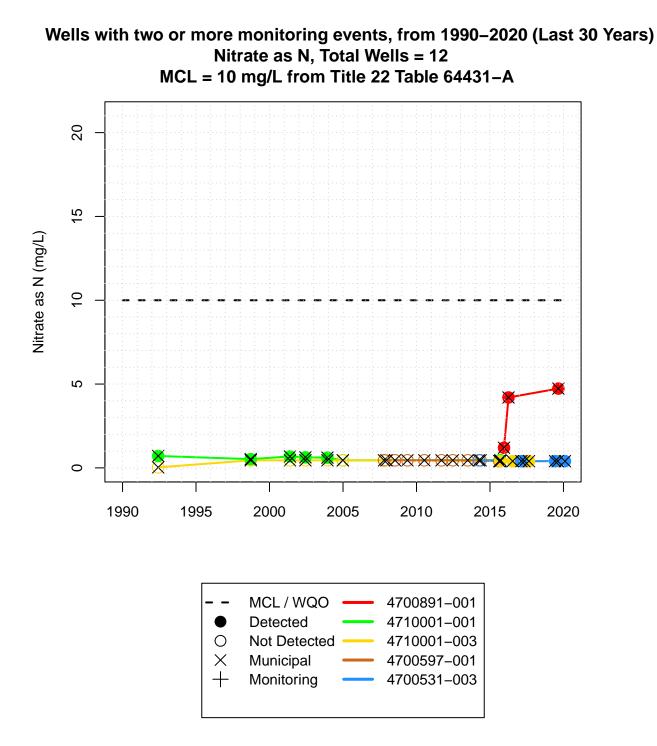





Figure 18: Filtered Groundwater Quality Observations of the Constituent Short List

Figure 20: Filtered Groundwater Quality Observations of the Constituent Short List

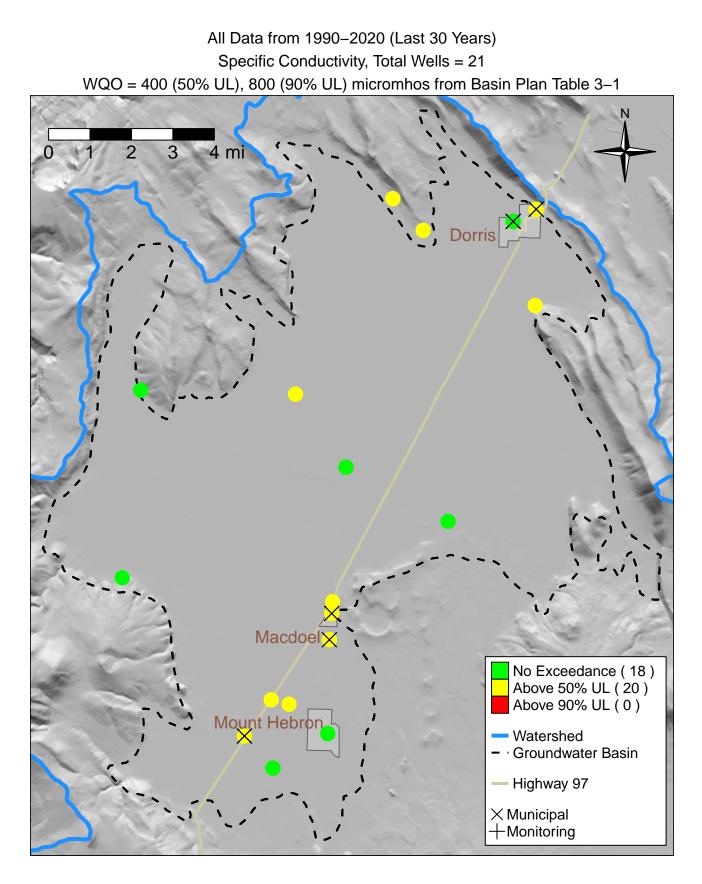


Figure 21: Groundwater Quality Observations of the Constituent Short List

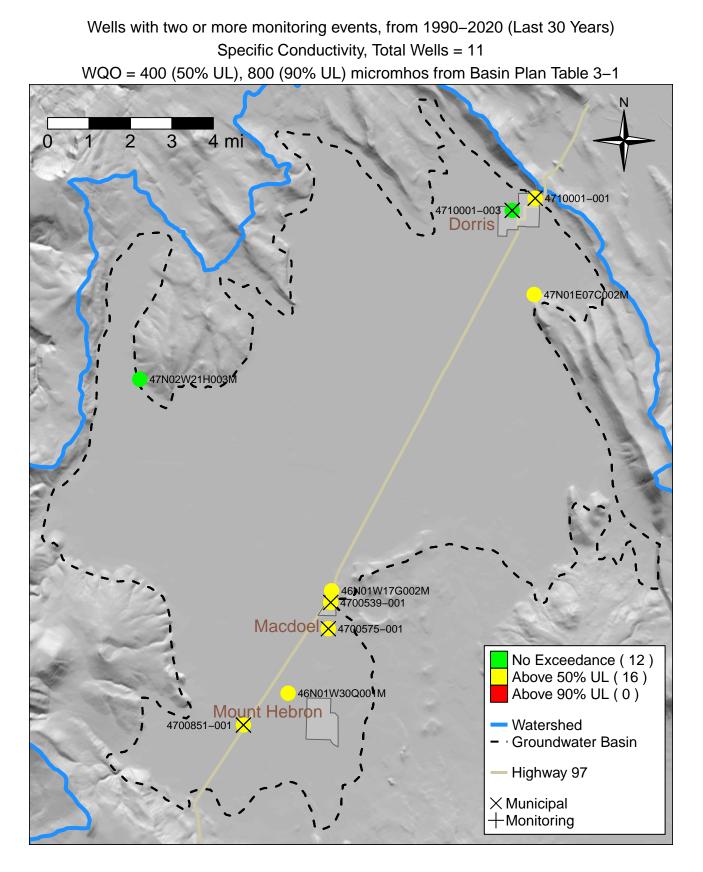
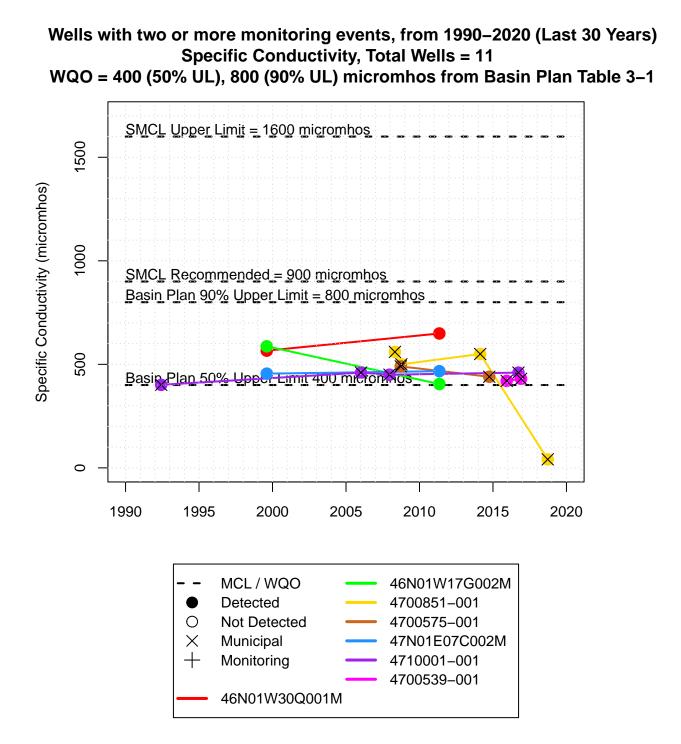
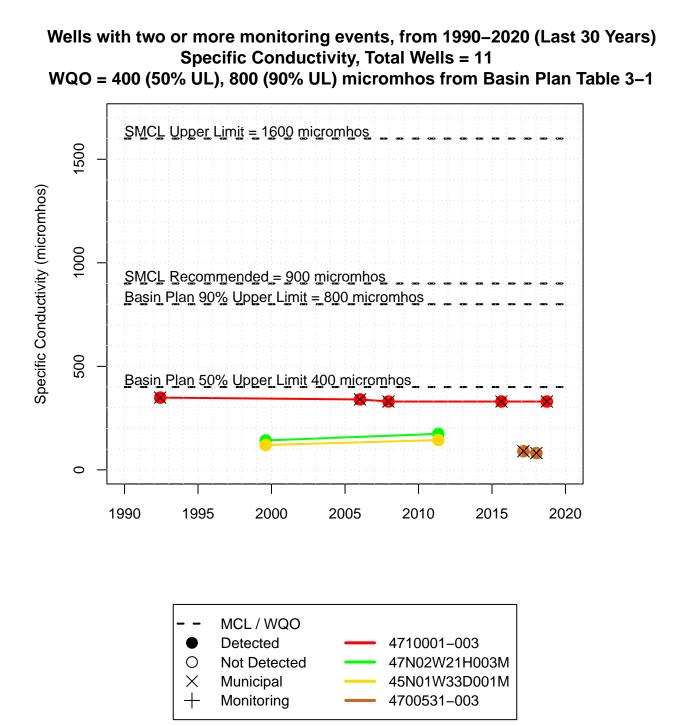
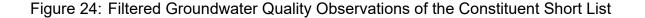





Figure 22: Filtered Groundwater Quality Observations of the Constituent Short List

References

¹⁹⁴ California North Coast Regional Water Quality Control Board. 2018. "North Coast Basin Plan
 ¹⁹⁵ Chapter 2: Beneficial Uses." June.