Appendix 4-A Scott Valley Management Scenario Results

Scott Valley Management Scenario Results

Claire Kouba

$3 / 3 / 2021$

Table of Contents

1. Summary Table of model results
2. Explanatory plots - how to read results graphs
3. Visual reference and description for each scenario
4. Flows and Flow Changes results
5. Fall Flows Threshold Crossing plots ("reconnection" date distribution)
6. Summer Flows Threshold Crossing plots ("disconnection" date distribution)
7. Flow Percentiles and Comparison to Other Flow Regimes (CDFW, USGS)

Scott Valley Management Scenario Results
Summary Table

Scenario Type	Scenario ID	Scenario Depletion Reversal, Sep-Nov '91-'18 (TAF)	Relative Depletion Reversal, Sep-Nov '91-'18
Enhanced Recharge	MAR (Managed Aquifer Recharge) in Jan-Mar	13	10\%
	ILR (In-Lieu Recharge) in the early growing season	12	9\%
	MAR + ILR	25	19\%
	$\begin{aligned} & \text { Expanded MAR + ILR (assumed max infiltration rate of } \\ & 0.019 \mathrm{~m} / \mathrm{d} \text {) } \\ & \hline \end{aligned}$	60	44\%
Diversion Limits	All surface water diversions limited at low FJ flows	51	38\%
	MAR + ILR, with all surface water diversions limited at low FJ flows	77	57\%
Crop change	80\% Irrigation demand	82	61\%
	90\% Irrigation demand	40	29\%
Irrigation Efficiency	Improve irrigation efficiency by 0.1	5.8	4\%
	Improve irrigation efficiency by 0.2	16	12\%
	Reduce irrigation efficiency by 0.1	-3.2	-2\%
Irrigation schedule change	Alfalfa irrigation schedule - July 10 end date	117	86\%
	Alfalfa irrigation schedule - Aug 01 end date	82	60\%
	Aug 01 end date, dry years only ('91, '92, '94, '01, '09, '13, '14, '18)	19	14\%
	Alfalfa irrigation schedule - Aug 15 end date	45	33\%
	Aug 15 end date, dry years only ('91, '92, '94, '01, '09, '13, '14, '18)	9	7\%
Attribution adjudicated area impacts	Natural Vegetation Outside Adjudicated area (NVOA)	171	126\%
	Natural Vegetation, on Groundwater- or Mixed-source fields, Outside Adjudicated area (NV-GWM-OA)	136	100\%
	Natural Vegetation Inside Adjudicated area (NVIA)	126	93\%
	Natural Vegetation, on Groundwater- or Mixed-source fields, Inside Adjudicated area (NV-GWM-IA)	116	85\%
	Natural Vegetation (NV)	287	212\%
	Natural Vegetation on all Groundwater- or Mixed-source fields (NV-GWM)	233	171\%
Reservoir	9 TAF Reservoir, 30 cfs release, Shackleford	46	34\%
	9 TAF Reservoir, 30 cfs release, Etna	65	48\%
	9 TAF Reservoir, 30 cfs release, French	78	58\%
	9 TAF Reservoir, 30 cfs release, S. Fork	35	26\%
100\% reliable reservoir	29 TAF Reservoir, 100\% reliability 30 cfs release	72	53\%
	134 TAF Reservoir, 100\% reliability 60 cfs release	250	184\%

s॥əм $\forall W$ S u! suiduind of əna *

quantified as:

ज
Average Daily Streamflow (cfs)

 ио!!əןdə pue uо!

σ

כWS әપұ бu!̣ィ!!uenठ

[^0]

Avg monthly depletion reversal (cfs)
Avg monthly depletion reversal (cfs)

feasible, and fair.

人｜чłиou рә马ిедәле ‘sıеә人 8乙－əseวəseq snu！u о！меиəวs ‘мо｜f u！əร̊иечว

Average Streamflow Difference（cfs）

Flow Change Results

$$
\begin{aligned}
& \text { 운 } \\
& \text { Ə」 } \\
& \text { əuu0J } \\
& \text { әұер „ио!̣ว }
\end{aligned}
$$

- Water delivered through SVID Ditch
- Surface water applied to orange and
yellow fields, Jan-Mar.
MAR (Managed Aquifer Recharge)

工НVYG

＇әдqе！！eле s！ләұем әכefuns se buol se sеәs Би！модб Кдеәә әчъ и！ләұемриподб Guildund Łо peәұsu！spiə！！pəд pue о॥ə人 оұ дәұем әэецй sə！｜ddе доұедədo •

Səコગセ 06t＇s •

$$
\begin{aligned}
& \text { MAR }+ \text { ILR } \\
& \text { • } 6,250 \text { combined acres } \\
& \text { • Both MAR (January-March) and ILR (early } \\
& \text { growing season) practices used. }
\end{aligned}
$$

ş!u! | uo!s」ə^!p
su!|MO|Fㄱ!! леш غг

SMO|f
Restric SUO!̣ว人ıełnq!ı uo
 8LOZ леә人 ләңем
fields).

Irrigation demand change

$6.0^{-8} 8!\lambda!$
$8.0^{-8!}$!

을 S.عə人人juo

LHVYG

＇poùad not run dry during the 1991－2018

 ＇әбелоұs u！дәృем su！̣едәд ұnq
the growing season（Apr．1－June 31）， бu！ınp цбnoגчł ssed of дəұем SMO｜｜甘 the reservoir is full． the wet season（Dec．1－Mar．31），until
 дериய！！ Multiple reservoirs represented by one
29 TAF reservoir located on Etna Creek
Alters the flow of Etna creek to

サอ⿰习习
孔е ӘऽЕəןə uoseəs
Ә｜d！̣｜nW

Flow change results (Fort Jones Gauge)

Changes in the simulated flow at the Fort Jones USGS flow gauge (number 11519500) are an indicator of the effect of a project or management action (PMA) on the Scott River stream system. Interpretation details are below; see explanatory plots at the beginning of this appendix for more information.

- Upper left plot: Black dots show the average change in flow (scenario minus basecase) in each month (e.g., all Januaries averaged over the 28 -year model period). Whiskers indicate the standard deviation of flow values for each month. Blue areas show that on average, the scenario flow in those months is higher than the historical basecase, indicating that the project or management action would have increased flow in that month. Red areas indicate months with lower flow under the specified scenario.
- Upper right plot: Red, yellow and blue dots and lines indicate the monthly average change in flow in three example water years: 2014 (Dry), 2010 (Average), and 2017 (Wet). Some dots may be missing for some months - this indicates they are beyond the bounds of the figure axes. These example years are included to show deviations from average system behavior due to water year type and year-to-year variability.
- Lower left plot: Black dots show the monthly streamflow (averaged over the 28 year model period) in the historical basecase simulation. Whiskers show the standard deviation of those monthly flows. This is included for reference and is the same on every page of this appendix.
- Lower right plot: Dashed lines indicate the monthly hydrograph in the basecase (in dotted lines) and in the specified scenario (in solid lines) for the three example water years specified above. Shading has been added to each plot to indicate "Total Depletion" used to define the SMC.

Total Depletion is defined as the difference in simulated Fort Jones flow between the basecase and the No-Pumping Reference Case, in which pumping is turned off outside the adjudicated zone and a reversion to natural vegetation is assumed on all fields serviced by groundwater or mixed groundwater-surface water sources. The No-Pumping Reference Case has also been referred to with these names: "No Pumping Outside Adjudicated Zone" or "Natural Vegetation, Groundwater and Mixed-source fields, Outside Adjudicated Zone [NV-GWM-OA]".

In all graphs, the Total Depletion is indicated by the shaded area. The top of the shaded area is the unmarked hydrograph for the No-Pumping Reference case. The bottom of the shaded area, marked by the dashed line, is the hydrograph of the Basecase. Hydrographs for the scenarios are shown with solid lines. The relative position of the solid line within the shaded area shows how much a PMA can increase streamflow (reverse stream depletion) relative to the Basecase (dashed line) and relative to the Total Depletion (shaded area).

MAR (Managed Aquifer Recharge)

ILR (In-Lieu Recharge)

MAR and ILR

Expanded MAR and ILR, assumed infiltration rate of $0.019 \mathrm{~m} / \mathrm{d}$

Limited surface diversions at low flows

MAR and ILR with limited surface diversions at low flows

80% of Historical Irrigation Demand

90\% of Historical Irrigation Demand

Improve Irrigation Efficiency by 10\%

Improve Irrigation Efficiency by 20\%

Reduce Irrigation Efficiency by 10\%

Alfalfa Irrigation Stops July 10

Alfalfa Irrigation Stops Aug. 01

Alfalfa Irrigation Stops Aug. 01, dry years only

Alfalfa Irrigation Stops Aug. 15

Alfalfa Irrigation Stops Aug. 15, dry years only

No Irrigation Outside Adjudicated Zone

No Pumping Outside Adjdicated Zone

No Irrigation Inside Adjudicated Zone

No Pumping Inside Adjdicated Zone

No Irrigation, Both Zones

No Pumping, Both Zones

9 TAF Reservoir, Shackleford Creek

9 TAF Reservoir, Etna Creek

9 TAF Reservoir, French Creek

9 TAF Reservoir, South Fork

Reservoir, Etna Creek, 100\% dry season 30 cfs release

Reservoir, Etna Creek, 100\% dry season 60 cfs release

Rising flows in the fall ("reconnection" date distribution)

In the late summer and early fall, the Scott River can be dry, or running so low as to be impassable for spawning salmon. In these years, the "reconnection date" of the river is an important metric of ecosystem services: did the river become passable for salmon early enough in the spawning season?

These results show the distribution of threshold-crossing dates of flow at the Fort Jones Gauge, or the first date in the fall season on which the flow exceeded a threshold. This threshold-crossing metric is assumed to be a proxy for reconnection dates. Multiple thresholds are depicted (10, 20,30 and 40 cfs) to indicate uncertainty in the exact threshold of "reconnection" of different parts of the lower Scott River stream system.

In general, scenarios in which more water years rise above the threshold earlier indicate more favorable hydrologic conditions (or, more dots on the left side of the plots is better). See explanatory graphs at the beginning of this appendix for more information.

Observed and Simulated Historical FJ Flow

Recharge Scenarios

Tributary Diversion Limits at Low FLows

Threshold: 10 cfs

First day with flow $>=10 \mathrm{cfs}$
Threshold: $\mathbf{3 0}$ cfs

First day with flow $>=30 \mathrm{cfs}$

Threshold: 20 cfs

First day with flow $>=20 \mathrm{cfs}$
Threshold: 40 cfs

First day with flow >=40 cfs

Irrigation Demand

Irrigation Efficiency

Alfalfa Irrigation Schedule

Land Use Change (Attribution Study)

Threshold: 10 cfs

First day with flow $>=10 \mathrm{cfs}$
Threshold: $\mathbf{3 0} \mathbf{~ c f s}$

First day with flow $>=30 \mathrm{cfs}$

First day with flow $>=20$ cfs
Threshold: 40 cfs

First day with flow >=40 cfs

Small Reservoir

Threshold: 10 cfs

First day with flow $>=10 \mathrm{cfs}$
Threshold: $\mathbf{3 0}$ cfs

First day with flow $>=30 \mathrm{cfs}$

Threshold: 20 cfs

First day with flow $>=20 \mathrm{cfs}$
Threshold: 40 cfs

First day with flow $>=40$ cfs

100\% Reliable Reservoir (30 or 60 cfs release)

Threshold: 10 cfs

First day with flow $>=10 \mathrm{cfs}$
Threshold: $\mathbf{3 0} \mathbf{c f s}$

First day with flow $>=30 \mathrm{cfs}$

Threshold: 20 cfs

First day with flow $>=20 \mathrm{cfs}$
Threshold: 40 cfs

First day with flow >=40 cfs

Declining flows in the summer ("disconnection" date distribution)

Over the course of the late spring and summer, the Scott River decreases gradually from snowmelt-influenced high flows to summer baseflow. Earlier decline in summer flows is believed to correspond to poorer habitat conditions for juvenile salmonids.

In particular, the "disconnection date" of the river is an important metric of ecosystem services: was the river flow high enough for long enough to allow juvenile salmonids to migrate out of the watershed towards the ocean?

These results show the distribution of threshold-crossing dates of flow at the Fort Jones Gauge, or the first date in the summer season on which the flow fell below a threshold. This thresholdcrossing metric is assumed to be a proxy for disconnection dates. Multiple thresholds are depicted (10, 20, 30 and 40 cfs) to indicate uncertainty in the exact threshold of "disconnection" of different parts of the lower Scott River stream system.

In general, scenarios in which more water years fall below the threshold later indicate more favorable hydrologic conditions (or, more dots on the right side of the plots is better). See explanatory graphs at the beginning of this appendix for more information.

Observed and Simulated Historical FJ Flow

Recharge Scenarios

Tributary Diversion Limits at Low FLows

Irrigation Demand

Irrigation Efficiency

Alfalfa Irrigation Schedule

Land Use Change (Attribution Study)

Small Reservoir

100\% Reliable Reservoir (30 or 60 cfs release)

Percentile Flows and Flow Regime Comparison

The goal of these plots is to 1) visualize the variability in Fort Jones flow in each model scenario, and 2) compare the flow to two proscribed flow regimes.

- Brown dots and line: The brown dots indicate the median flow recorded on all days falling in a given month in the 28 -year model period (e.g., the median flow of all days of all the Januaries 1991-2018). That means that flow exceeds this brown line on approximately 50% of days in a given scenario.
- Gray shading: The dark gray shading captures the area from the 25 th to the 75 th percentiles of flow in a given month, and the light gray shading encompasses the 5th to the 95th percentiles. This means that that flow in a given scenario falls within the dark gray area on 50%, and within the light gray area on 90%, of days.
- Blue lines: The light blue line shows the flow regime published in the 2017 California Department of Fish and Wildlife (CDFW) report "Interim Instream Flow Criteria for the Protection of Fishery Resources in the Scott River Watershed, Siskiyou County". The dark blue line shows the flow regime for the United States Forest Service (USFS) water right as quantified in the Scott River Adjudication of 1980 (Decree No. 30662).

At the bottom of each plot, a note indicates the percentage of days in the critical low flow window (Sept. 1-Nov. 30, for all water years 1991-2018) on which each threshold was met.

Historical observed Fort Jones Flow

Observed FJ Flow, 1991-2018

Basecase (simulated historical)

Simulated FJ Flow, 1991-2018

MAR (Managed Aquifer Recharge)

Simulated FJ Flow, 1991-2018

ILR (In-Lieu Recharge)

Simulated FJ Flow, 1991-2018

MAR and ILR

Simulated FJ Flow, 1991-2018

Expanded MAR and ILR, assumed infiltration rate of $0.019 \mathrm{~m} / \mathrm{d}$

Simulated FJ Flow, 1991-2018

Limited surface diversions at low flows

Simulated FJ Flow, 1991-2018

MAR and ILR with limited surface diversions at low flows

Simulated FJ Flow, 1991-2018

80\% of Historical Irrigation Demand

Simulated FJ Flow, 1991-2018

90\% of Historical Irrigation Demand

Simulated FJ Flow, 1991-2018

Improve Irrigation Efficiency by 10\%

Simulated FJ Flow, 1991-2018

Improve Irrigation Efficiency by 20\%

Simulated FJ Flow, 1991-2018

Reduce Irrigation Efficiency by 10\%

Simulated FJ Flow, 1991-2018

Alfalfa Irrigation Stops July 10

Simulated FJ Flow, 1991-2018

Alfalfa Irrigation Stops Aug. 01

Simulated FJ Flow, 1991-2018

Alfalfa Irrigation Stops Aug. 01, dry years only

Simulated FJ Flow, 1991-2018

Alfalfa Irrigation Stops Aug. 15

Simulated FJ Flow, 1991-2018

Alfalfa Irrigation Stops Aug. 15, dry years only

Simulated FJ Flow, 1991-2018

No Irrigation Outside Adjudicated Zone

Simulated FJ Flow, 1991-2018

No Pumping Outside Adjdicated Zone

Simulated FJ Flow, 1991-2018

No Irrigation Inside Adjudicated Zone

Simulated FJ Flow, 1991-2018

No Pumping Inside Adjdicated Zone

Simulated FJ Flow, 1991-2018

No Irrigation, Both Zones

Simulated FJ Flow, 1991-2018

No Pumping, Both Zones

Simulated FJ Flow, 1991-2018

9 TAF Reservoir, Shackleford Creek

Simulated FJ Flow, 1991-2018

9 TAF Reservoir, Etna Creek

Simulated FJ Flow, 1991-2018

9 TAF Reservoir, French Creek

Simulated FJ Flow, 1991-2018

9 TAF Reservoir, South Fork

Simulated FJ Flow, 1991-2018

Reservoir, Etna Creek, 100\% dry season 30 cfs release

Simulated FJ Flow, 1991-2018

Reservoir, Etna Creek, 100\% dry season 60 cfs release

Simulated FJ Flow, 1991-2018

[^0]:

