Scott Valley Integrated Hydrologic Model (SVIHM)

The Basics

Gus Tolley, Thomas Harter, Laura Foglia May, 2019

- Unforeseen consequences from move to more efficient irrigation:
 - Increased consumptive use in the valley (+ 50% for alfalfa)
 - Decreased groundwater recharge
 - Increased extractions from the aquifer
 - Streamflow depletion
- Can we change management strategies in the basin to improve fish habitat while maintaining agricultural production in the valley?

- Scott Valley
 - Watershed: 2,100 km² (800 mi²)
 - Valley: 200 km² (77 mi² = 50k ac)

- Scott Valley
 - Watershed: 2,100 km² (800 mi²)
 - Valley: 200 km² (77 mi² = 50k ac)
 - Mediterranean Climate
 - Wet winters and dry summers

- Scott Valley
 - Watershed: 2,100 km² (800 mi²)
 - Valley: 200 km² (77 mi² = 50k ac)
 - Mediterranean Climate
 - Wet winters and dry summers
 - "Bathtub" style sedimentary basin
 - Up to 76 m (250 ft) thick aquifer

- Scott Valley
 - Watershed: 2,100 km² (800 mi²)
 - Valley: 200 km² (77 mi² = 50k ac)
 - Mediterranean Climate
 - Wet winters and dry summers
 - "Bathtub" style sedimentary basin
 - Up to 76 m (250 ft) thick aquifer
 - Scott River flows from south to north
 - 12 major tributary streams
 - 2 major diversion ditches

Outline

- Motivation and study area overview
- Conceptual outline and description of Scott Valley Integrated Hydrologic Model (SVIHM)
- Sensitivity analysis and calibration results
- Uncertainty analysis
- Future work

...all models are wrong...

...the ability to devise simple but evocative models is the signature of the great scientist... ...overparameterization is often the mark of mediocrity.

[Box, 1976]

- All models are wrong, but some are useful.
- Principle of parsimony (KISS)

Conceptual Outline of SVIHM

Streamflow entering Scott Valley (Regression model)

Upper Watershed Model

Conceptual Outline of SVIHM

Streamflow entering Scott Valley (Regression model)

Recharge and pumping within the valley (Tipping bucket model)

Soil-Water Budget Model

• Calculates daily water fluxes at field-scale

- Calculates daily water fluxes at field-scale
- Input data
 - Landuse (transient)
 - Soil properties
 - Irrigation type (transient)
 - Water source
 - Potential ET
 - Crop Coefficients (Kc)
 - Rooting depth
 - Precipitation
 - Streamflow

- Daily outputs for each field
 - Potential ET
 - Actual ET (water limited)
 - Total irrigation
 - Applied surface-water
 - Applied groundwater
 - Groundwater recharge
 - Soil water content

Soil-Water Budget Model Output

- Daily outputs for each field
 - Potential ET
 - Actual ET (water limited)
 - Total irrigation
 - Applied surface-water
 - Applied groundwater
 - Groundwater recharge
 - Soil water content
- Groundwater recharge and pumping are averaged to monthly values for MODFLOW model

Conceptual Outline of SVIHM

Streamflow entering Scott Valley (Regression model)

Recharge and pumping within the valley (Tipping bucket model)

Detailed groundwater levels and streamflow within the valley (MODFLOW model)

- Aquifer properties:
 - Hydraulic conductivity (vertical/horizontal)
 - Specific yield (storage coefficient)
 - Largely based on zones defined by Mack (1958)

• Daily time steps with monthly stress periods

- Daily time steps with monthly stress periods
- 100m lateral discretization

- Daily time steps with monthly stress periods
- 100m lateral discretization
- Streamflow routing package (SFR) used to simulate Scott River and tributaries

- Daily time steps with monthly stress periods
- 100m lateral discretization
- Streamflow routing package (SFR) used to simulate Scott River and tributaries
- Discharge Zone

- Daily time steps with monthly stress periods
- 100m lateral discretization
- Streamflow routing package (SFR) used to simulate Scott River and tributaries
- Discharge Zone
- Oct 1, 1990 Sep 30, 2011 simulation period

- SVIHM weakly couples a streamflow regression model, soil-water budget model, and MODFLOW model
- Recharge is estimated at the field scale
- Fine spatial discretization (100 m laterally)
- Groundwater heads and streamflow are solved together

Model Validation (Calibration 4)

Scott Valley Integrated Hydrologic Model (SVIHM)

Scenario Modeling

Thomas Harter, Claire Kouba, Leland Scantlebury, Laura Foglia

ThHarter@ucdavis.edu

https://groundwater.ucdavis.edu

University of California Agriculture and Natural Resources

Number of Agricultural Wells Drilled is **NOT EQUAL** to Groundwater Use!

Adapted from Well Completion Reports - Datasets - California Natural Resources Agency Open Data

* Note: may include inactive and abandoned wells

Computer models are, of course, a standard tool to assess complex environmental links

continuous monitoring: precipitation, snow-pack, stream-gages, water levels, stream transects, ...

Scott Valley Integrated Hydrologic Model

SVIHM

Foglia et al., 2013, 2018

Using real world observations and a computer model to estimate flow, water levels, budgets

continuous monitoring: precipitation, snow-pack, stream-gages, water levels, stream transects, land use practices,...

UNIVERSITY OF CALIFORNIA

Basecase: The real history represented in a model to estimate flow, water levels, budgets

What is a Model Scenario?

Pretending that history had been different!

Why run a Model Scenario?

To measure **differences**

- in flows, water levels, water budgets etc
- under some different conditions ("scenario" conditions)
- if history repeated itself otherwise

Building model scenarios to estimate differences to basecase in flow, water levels, budgets

continuous monitoring: precipitation, snow-pack, stream-gages, water levels, stream transects, land use practices,...

What is a Model Scenario?

Pretending that history had been different!

Why run a Model Scenario?

To measure **differences**

- in flows, water levels, water budgets etc
- under some different conditions ("scenario" conditions)
- if history repeated itself otherwise

But will the history repeat itself?

Not exactly, but perhaps similar enough.

Scenario Models

Building model scenarios to estimate differences to basecase in flow, water levels, budgets

continuous monitoring: precipitation, snow-pack, stream-gages, water levels, stream transects, land use practices,...

Two Model Runs Required to Quantify Depletion

Streamflow depletion due to pumping in a group of regulated wells is quantified as:

- the difference in surface flows...
- over the model period of 1991-2018...
- between the Basecase (estimated historical/current) conditions and the No Pumping/Unimpaired Reference case.

Using real world observations and a computer model to take regular "measurements"

continuous monitoring: precipitation, snow-pack, stream-gages, water levels, stream transects, ...

projects and management actions: implementation, monitoring of implementation

Tolley et al., 2019

Surface Water Depletion

- regular (annual?) update to extend simulation period to current using measured input data (stream inflow, precip, temp)
- regularly (every 5 years) recalibrated against new data, projects, research
- transparent input, model construction, public domain, peer review

Volume of SW Depletions

Building model scenarios to estimate differences to basecase in flow, water levels, budgets

Trib

Inflows to valley

Water_Source
Surface-wat
Groundwate
Mixed
Sub
Dry
Unknown

Flood Center Pivot Wheel Line Unknown

Surface Water

Depletion

E

Volume of SW

Depletions

A Third Model Run Required to "Monitor" Project and Management Actions

Depletion reversal is quantified for **each** scenario as the difference between the Basecase (simulated historical & current) conditions and the relevant scenario (for example, MAR+ILR).

*Note: Areas not proportional due to log-y axis

Scott Valley Groundwater Basin, Groundwater Sustainability Plan 2022 https://sgma.water.ca.gov/portal/gsp/status

Using the No-Pumping (Unimpaired) Scenario

*Note: Areas not proportional due to log-y axis

Total Streamflow Depletion* is quantified as:

- the **difference in flow** at the Fort Jones Gauge...
- over the model period of 1991-2018...
- between the Basecase (estimated historical/current) conditions and the No Pumping** Reference case.

* Due to pumping in SGMA wells

** Also referred to as "Natural Vegetation on GW and Mixedsource fields Outside the Adjudicated Zone", or NV-GWM-OA

Overlaying a Project/Management Action Scenario

Depletion Reversal is quantified for **each** scenario as the difference between the Basecase (simulated historical & current) conditions and the relevant scenario (for example, MAR+ILR).

Total Depletion, 2010 Total Depletion, 2017

Total Depletion, 2014

*Note: Areas not proportional due to log-y axis

Scenario information					
Scenario Type	Scenario ID	Scenario description			
Enhanced Recharge	MAR	Divert surface water to over-irrigate fields and enhance groundwater recharge during the wet season (Dec-Mar). Allow diversions from tributaries to continue as long as water is available (on a monthly volume basis).			
	ILR	Divert surface water to irrigate fields during the growing season (Apr-Jun or Jul) in lieu of pumping groundwater. Allow diversions from tributaries to continue as long as water is available (on a monthly volume basis).			
	MAR_ILR	Combination of MAR and ILR scenarios.			
	Expanded MAR_ILR, 0.019	MAR and ILR on all old MAR and ILR fields and all other fields with Surface Water access. Assumed max infiltration rate of 0.019 m/day. CDFW instream flow recommendations restrict water available for MAR.			
Crop change	80% Irrigation	Assumes unspecified irrigated crop change, reducing all irrigated acreage water demand by 20%.			
	90% Irrigation	Assumes unspecified irrigated crop change, reducing all irrigated acreage water demand by 10%.			
Irrigation	Improve irrigation efficiency by 0.1	Effective irrigation efficiency of wheel line and center pivot on alfalfa and pasture improves by 0.1 (10%).			
Efficiency	Reduce irrigation efficiency by 0.1	Effective irrigation efficiency of wheel line and center pivot on alfalfa and pasture worsens by 0.1 (10%).			
Irrigation schedule change	Alfalfa irrigation schedule - July 10 end date	Alfalfa irrigation ceases on July 10th of every growing season. (Basecase is Aug 31st)			
	Alfalfa irrigation schedule - Aug 01 end date	Alfalfa irrigation ceases on Aug 1st of every growing season. (Basecase is Aug 31st)			
	Aug 01 end date, dry years only	Alfalfa irrigation ceases on Aug 1st of every growing seasons in these years: 91, 92, 94, 01, 09, 13, 14, 18. (Basecase is Aug 31st)			
	Alfalfa irrigation schedule - Aug 15 end date	Alfalfa irrigation ceases on Aug 15th of every growing season. (Basecase is Aug 31st)			
	Aug 15 end date, dry years only	Alfalfa irrigation ceases on Aug 15th of every growing seasons in these years: 91, 92, 94, 01, 09, 13, 14, 18. (Basecase is Aug 31st)			
Attribution - adjudicated area impacts	Natural Vegetation Outside Adjudicated area (NVOA)	Turns off pumping for wells serving all fields outside the adjudicated zone. Assumes that these fields, where pumping is turned off, revert to natural vegetation with a k_c value of 1.0. Assumes that all fields with 5% or more of their area overlapping with the adjudicated zone are "inside" the adjudicated zone. Increase ET extinction depth (in MODFLOW .ETS package) to 4.5 m in native vegetation areas outside the Discharge Zone.			
	Natural Vegetation, on Groundwater- or Mixed source fields, Outside Adjudicated area (NV- GWM-OA)	Turns off pumping for wells serving fields outside the adjudicated zone, which have a "groundwater" or "mixed groundwater and surface water" irrigation source. Assumes that these fields, where pumping is turned off, revert to natural vegetation with a k_c value of 1.0. Assumes that all fields with 5% or more of their area overlapping with the adjudicated zone are "inside" the adjudicated zone. Increase ET extinction depth (in MODFLOW .ETS package) to 4.5 m in native vegetation areas outside the DIscharge Zone.			
	Natural Vegetation Inside Adjudicated area (NVIA)	Turns off pumping for wells serving all fields inside the adjudicated zone. Assumes that these fields, where pumping is turned off, revert to natural vegetation with a k_c value of 1.0. Assumes that all fields with 5% or more of their area overlapping with the adjudicated zone are "inside" the adjudicated zone. Increase ET extinction depth (in MODFLOW .ETS package) to 4.5 m in native vegetation areas outside the Discharge Zone.			
	Natural Vegetation, on Groundwater- or Mixed source fields, Inside Adjudicated area (NV- GWM-IA)	Turns off pumping for wells serving fields inside the adjudicated zone, which have a "groundwater" or "mixed groundwater and surface water" irrigation source. Assumes that these fields, where pumping is turned off, revert to natural vegetation with a k_c value of 1.0. Assumes that all fields with 5% or more of their area overlapping with the adjudicated zone are "inside" the adjudicated zone. Increase ET extinction depth (in MODFLOW .ETS package) to 4.5 m in native vegetation areas outside the DIscharge Zone.			
	Natural Vegetation (NV)	Turns off pumping for wells serving all irrigated fields in the SVIHM model. Assumes that these fields, where pumping is turned off, revert to natural vegetation with a k_c value of 1.0. Assumes that all fields with 5% or more of their area overlapping with the adjudicated zone are "inside" the adjudicated zone. Increase ET extinction depth (in MODFLOW .ETS package) to 4.5 m in native vegetation areas outside the Discharge Zone.			
	Natural Vegetation on all Groundwater- or Mixed-source fields (NV-GWM)	Turns off pumping for wells serving all irrigated fields which have a "groundwater" or "mixed groundwater and surface water" irrigation source. Assumes that these fields, where pumping is turned off, revert to natural vegetation with a k_c value of 1.0. Assumes that all fields with 5% or more of their area overlapping with the adjudicated zone are "inside" the adjudicated zone. Increase ET extinction depth (in MODFLOW .ETS package) to 4.5 m in native vegetation areas outside the Discharge Zone.			
Reservoir	Reservoir, 30 cfs release, Shackleford	Simulates a 9 TAF reservoir on the Shackleford Creek tributary by withholding wet-season flow and releasing it during the dry season according to set operations rules.			
	Reservoir, 30 cfs release, Etna	Simulates a 9 TAF reservoir on the Etna Creek tributary by withholding wet-season flow and releasing it during the dry season according to set operations rules.			
	Reservoir, 30 cfs release, French	Simulates a 9 TAF reservoir on the French Creek tributary by withholding wet-season flow and releasing it during the dry season according to set operations rules.			
	Reservoir, 30 cfs release, S. Fork	Simulates a 9 TAF reservoir on the South Fork tributary by withholding wet-season flow and releasing it during the dry season according to set operations rules.			
100% reliable	100% reliability 30 cfs release	Simulates a 29 TAF reservoir on the Etna Creek tributary by withholding wet-season flow and releasing it during the dry season according to set operations rules.			
reservoir	100% reliability 60 cfs release	Simulates a 29 TAF reservoir on the Etna Creek tributary by withholding wet-season flow and releasing it during the dry season according to set operations rules.			

Quantifying the SMC

To calculate relative depletion reversal, sum the darker areas for each year and divide by the sum of the lighter areas in the Sept-Nov window.

Overall, the MAR+ILR scenario Reverses

19%

of the Sept.-Nov. Depletion for 1991-2018.

		Scenario	Relative
Sconario Type	Scenario ID	Depletion	Depletion
Scenario Type	Scenario id	Reversal, Sep-Nov	Reversal, Sep-
		'91-'18 (TAF)	Nov '91-'18
Enhanced Recharge	MAR	13	10%
	ILR	12	9%
	MAR_ILR	25	19%
	Expanded MAR_ILR (assumed max infiltration rate of 0.019 m/d)	60	44%
Crop change	80% Irrigation demand	82	61%
	90% Irrigation demand	40	29%
Irrigation Efficiency	Improve irrigation efficiency by 0.1	5.8	4%
	Reduce irrigation efficiency by 0.1	-3.2	-2%
Irrigation	Alfalfa irrigation schedule - July 10 end date	117	86%
schedule	Alfalfa irrigation schedule - Aug 01 end date	82	60%
change	Aug 01 end date, dry years only ('91, '92, '94, '01, '09, '13, '14, '18)	19	14%
	Alfalfa irrigation schedule - Aug 15 end date	45	33%
	Natural Vegetation Outside Adjudicated area (NVOA)	171	126%
Attribution	Natural Vegetation, on Groundwater- or Mixed-source fields, Outside Adjudicated area (NV-GWM-OA)	136	100%
Attribution -	Natural Vegetation Inside Adjudicated area (NVIA)	126	93%
aujuuicateu	Natural Vegetation, on Groundwater- or Mixed-source fields, Inside Adjudicated area (NV-GWM-IA)	116	85%
area impacts	Natural Vegetation (NV)	287	212%
	Natural Vegetation on all Groundwater- or Mixed-source fields (NV-GWM)	233	171%
	Reservoir, 30 cfs release, Shackleford	46	34%
Posorvoir	Reservoir, 30 cfs release, Etna	65	48%
Reservoir	Reservoir, 30 cfs release, French	78	58%
	Reservoir, 30 cfs release, S. Fork	35	26%
100% reliable	100% reliability 30 cfs release	72	53%
reservoir	100% reliability 60 cfs release	155	114%

How to read and interpret graphs of scenario results

Plot Explanations

All flows and flow changes plotted are for the Fort Jones Gauge location

Managed Aquifer Recharge (MAR) and In-Lieu Recharge (ILR)

UCDAVIS UNIVERSITY OF CALIFORNIA

Scott Valley

Groundwater

Sustainability

Plan, 2021

Graphs that show results for the entire year, for all years

Graphs that show results for the entire year, for all years

Timeline heatmap of "above threshold" (green) or "below threshold" Ft. Jones gage flows

Hypothetical historic curtailments in Scott Valley based on historic flows and 2021 SWRCB Emergency Flows, Pyschik and Harter, UC Davis 2023.

Month

UNIVERSITY OF CALIFORNIA

Hypothetical historic curtailments in Scott Valley based on historic flows and 2021 SWRCB Emergency Flows, Pyschik and Harter, UC Davis 2023.

Hypothetical historic curtailments in Scott Valley based on historic flows and 2021 SWRCB Emergency Flows, Pyschik and Harter, UC Davis 2023.

Hypothetical historic curtailments in Scott Valley based on historic flows and 2021 SWRCB Emergency Flows, Pyschik and Harter, UC Davis 2023.

Hypothetical historic curtailments in Scott Valley based on historic flows and 2021 SWRCB Emergency Flows, Pyschik and Harter, UC Davis 2023.

Summary of the **range of flows observed** in a given month at the Fort Jones gage

- Each month of 1991 2018:
 - January: range of average flow among 28 Januaries
 - February: range of average flow among 28 Februaries
 -
- Dark red line with dot: 14 years have flows above, 14 years have flows below (by month)
- Dark-shaded grey area: in half of years (14 years), monthly average daily flow was within this range (7 below the red line with dots, 7 above the red line with dots)
- Light-shaded grey area: 5 or 6 years were in this range (5 or 6 in the lower one, 5 or 6 in the upper one)
- Extreme years (1 in 10):
 - one or two years among the 28 falls below the lower the greyshaded area and
 - one year or two years among the 28 that falls above the upper grey-shaded area
- Proposed in-stream flows:
 - Blue: CDFW 2017 instream flow table
 - Red: CDFW 2022 drought instream flow table
 - Red (in the GSP): USFS water right (similar to CDFW 2022)

Percentile Statistics of Monthly Fort Jones Gage Flow (from simulations)

EmFlow_30LCS

EmFlow_100LCS

Simulated FJ Flow, 1991-2018

Simulated FJ Flow, 1991-2018

- 1 in 4 years has flows in the lower light grey zone
- 1 in 20 years has flows that fall *below* the light grey zone

Looking specifically at **fall flow reconnection timing**

Fall Season Timeline Heatmap of Forth Jones Gage Flows: Green = Good. Colored = below threshold

Trying to represent this in a more informative way: Identify the day of the year when flows are above threshold

Trying to represent this in a more informative way: Identify the day of the year when flows are above threshold

...and now **sort those points**: from bottom to top = **early to late**

"Reconnection date distribution" graph

How to read this graph: In the years 1991-2018, the FJ gauge "reconnected"* on or before Oct. 1 in ~63% of years.

years.

Notes on model *performance:* The discrepancies between the observed and simulated basecase distributions are another reason to think of scenario results as "relative change" rather than an exact prediction of future conditions.

40

Fall Reconnection Date, 1991-2018 – sorted early to late

Threshold: 40 cfs

First day with flow >= 40 cfs

Fall Reconnection Date, 1991-2018 – sorted early to late

Threshold: 40 cfs

"Reconnection date distribution" graphs Using them to explore an scenario option

MAR+ILR: Aim for a gain of 7-10 days in intermediate and some late years

Groundwater Irrigation Terminates on August 1 (annually)

MAR and ILR

100,000

Scenario monthly median flow

90% of flow

50% of flow

Statistical Analysis: Disconnection Reconnection, By-Month-Ranges

