OCTOBER ADVISORY COMMITTEE MEETINGS Shasta Valley Groundwater Advisory Committee Meeting

LARRY WALKER ASSOCIATES science | policy | solutions

Topics

- Groundwater Levels- Existing Monitoring and Data Collection
- Sustainable Groundwater Management (SGM) Grant Program's SGMA Implementation Round 2 Funding- Review of Final Funding
- Data Gap Work Group- outcomes from initial meeting
- Model Updates

Precipitation

Figure 2: Yreka annual precipitation from 1983 to 2022, according to CDEC data. The long term mean (18 in) shown as a red dashed line, and the ten year rolling mean is the blue trendline.

10

Ongoing Data Collection

- 19 wells measured continuously
 - 15 minute intervals
 - Telemetered
- 18 CASGEM Wells
 - Measured twice per year

Implementation Round 2 Funding Final Awards

COMPONENT	FUNDING AWARDED
 SGMA Compliance and GSP Updates Database Management GSP Revisions Reporting Model Updates and Scenario Evaluation Data Gaps and Monitoring Expansion Outreach 	\$1,628,000
 Fee Study and Economic Analysis Evaluation of fee/rate options Parcel specific groundwater use and supply Fee/rate schedule development Economic analysis 	\$220,000

Implementation Round 2 Funding Final Awards

COMPONENT	FUNDING AWARDED
 Well Inventory Well Risk Assessment and Mitigation Program Development Database Development Well Construction and/ or Instrumentation 	\$320,000
 Groundwater-Surface Water Connectivity Study Design, Planning, Permitting Monitoring Instrumentation Monitoring and Data Analysis 	\$570,000
 Upland Management Project Planning and Design Data Collection Data Analysis and Reporting 	\$410,000

Not started yet

Ongoing

Completed

Project Schedule

	October 2023	January 2024	April 2024	July 2024
SGMA Compliance and GSP Updates				
GSP Revisions				
 Reporting (Data reporting and Annual report) 				
Model Updates and Scenario Evaluation				
 Data Gaps and Monitoring Expansion 	Data gap subcommittee met in October 2023			
Database Management				
• Outreach				
Fee Study and Economic Analysis				
Well Inventory				

- **GW/SW** connectivity study
- Upland management

Model updates: Why? How? What does success look like?

Not started yetOngoingCompleted

MODEL UPDATES	October 2023	February 2024	May 2024	August 2024
Evaluation of current GW/SW model	Started, list of improvements, discussion with USGS	Completed		
Update geology based AEM surveys				
Update PRMS watershed model (with snow updates)				
Water budget/estimate for applied water use				
Coupling of PRMS and GW model				
Model recalibration using current data				
Improved ditch representation				
Sensitivity analysis of model boundaries → better understanding of FLOWS IN&OUT				
Simulations through 2023 (GSP> 1991-2018)				

Monitoring Network Work Group- Outcomes

- High priority on sources of groundwater recharge
 - Springs
 - Ditch infiltration
- Groundwater quality
 - Pesticide data testing to evaluate current conditions

Shasta Model Update

- Shasta Watershed Groundwater Model (SWGM)
 - $_{\odot}$ Updates to geologic model from the DWR AEM survey
 - Updates to Shasta Valley Precipitation Runoff Modeling System (PRMS)
 - Streamflow
 - Recharge
 - Incorporating automatic updates to extend model to new water year

Interpreting AEM resistivity: Overlapping Data

Consolidated sedimentary rocks take on a high range of resistivity. Southern Scott Valley is mapped with the Abrams and Salmon Shists consisting of *"generally eastward-dipping alternating beds of chert, sandstone, shale, slate, chlorite-sericite schist, and limestone"*

AEM and Shasta Valley

- AEM was designed for range of coarse to fine sediment and basalt and volcanic deposits may have been removed
- Shasta can be **highly variable** over short distances and the lithology logs from wells were less than 800m of (2,625 ft) of flight path
- Grid spacing too large to extrapolate data to area between grid lines
- AEM interpretation could be confused due to driller log definitions (i.e., fractured volcanic rock listed as cobbles and boulders)

AEM transect for Shasta Valley

• Notes about this analysis

The purple (high resistivity) is in an area that has previously been mapped as the Pluto Cave Basalt Flow.

Legend

Figure 4-2 Resistivity along Section 300700, distance interval 15-29 km. The location of the section is shown as the red line in the top panel, while the vertical resistivity section from west to east is shown in the bottom panel. Lithology data (colored rectangles) and water level measurements (blue triangles) measured from nearby boreholes are projected onto the section, with the well IDs shown above and the projection distance shown below the borehole.

This was blanked later from analysis

Data Report for Survey Area 2 Scott River Valley, Shasta Valley, and Butte Valley, October 11, 2022

AEM Applicability to Shasta Geological Model

AEM will result in localized changes to the geologic model, but the overall impact of the changes is uncertain until further modelling is complete.

May be useful in separating the Pluto Cave Basalt flow, currently not included in the model as a separate geologic unit.

May be useful in better defining thickness of geologic units, shapes of alluvial deposits, and fault blocks.

Shasta Valley Precipitation Runoff Modeling System (PRMS)

- Updates and extension
 - Incorporating local monitoring stations from CDEC and NOAA with PRISM
 - Precipitation
 - Temperature
 - Snowpack
 - Extending model to WY 2023

White = snowpack. Red = PRISM. Yellow = Observed Data

Shasta Valley Precipitation Runoff Modeling System (PRMS)

- Calibration
 - Incorporate additional stream gage stations on the Shasta River tributaries
 - Calibrate at subwatershed scale
 - $_{\odot}$ Re-calibrating up to WY 2023

Shasta Valley Precipitation Runoff Modeling System (PRMS)

 Previous calibration focused on the outlet station, SRY

Land Efficiency Study Opportunity

- Mobile Irrigation Lab- free on-CONSERVATION agricultural irrigation systems DISTRICT OF TEHAMA
- More information can be found here: <u>https://www.tehamacountyrcd.org/mobile-</u> <u>irrigation Lab</u>

Thank You